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This paper reviews applications of the lattice-Boltzmann method to simulations
of particle-fluid suspensions. We first summarize the available simulation
methods for colloidal suspensions together with some of the important applica-
tions of these methods, and then describe results from lattice-gas and lattice-
Boltzmann simulations in more detail. The remainder of the paper is an update
of previously published work, (69, 70) taking into account recent research by our-
selves and other groups. We describe a lattice-Boltzmann model that can take
proper account of density fluctuations in the fluid, which may be important in
describing the short-time dynamics of colloidal particles. We then derive macro-
dynamical equations for a collision operator with separate shear and bulk vis-
cosities, via the usual multi-time-scale expansion. A careful examination of the
second-order equations shows that inclusion of an external force, such as a
pressure gradient, requires terms that depend on the eigenvalues of the collision
operator. Alternatively, the momentum density must be redefined to include a
contribution from the external force. Next, we summarize recent innovations
and give a few numerical examples to illustrate critical issues. Finally, we derive
the equations for a lattice-Boltzmann model that includes transverse and longi-
tudinal fluctuations in momentum. The model leads to a discrete version of the
Green–Kubo relations for the shear and bulk viscosity, which agree with the
viscosities obtained from the macro-dynamical analysis. We believe that inclu-
sion of longitudinal fluctuations will improve the equipartition of energy in
lattice-Boltzmann simulations of colloidal suspensions.

KEY WORDS: Lattice-Boltzmann; suspensions; simulations of colloids; hydro-
dynamic interactions.



1. INTRODUCTION

The flow of a dense suspension of colloidal particles is difficult to quantify
experimentally or to predict theoretically. Rheological properties of colloi-
dal suspensions are sensitive to variations in inter-particle forces, which can
often result from small changes in solvent conditions. Although there is an
extensive literature of empirical correlations describing the rheology of
colloidal suspensions under certain flow conditions, a fundamental under-
standing of suspension rheology and dynamics is limited to simple model
systems. Numerical simulations can aid in extending our understanding to
more complex colloidal suspensions. First; they can provide a test bed for
theoretical ideas, allowing them to be evaluated in a simpler and more
rigorous environment than is possible experimentally. Second; they can be
used to isolate and investigate different physical effects. Third; they can
provide more detailed and direct information on the particle dynamics and
structure than is typically possible with experimental measurements. In this
article we will briefly review the simulation techniques available for particle
suspensions, and then focus on algorithms derived from the lattice-
Boltzmann model of the fluid phase. Some of the material presented here is
a summary of published work, particularly refs. 69 and 70. However, the
methodology has been modified to take account of density fluctuations in
the fluid, which may be important to the short-time dynamics of colloidal
particles, and also to consider more carefully the effects of external forces.
Recent advances and ongoing technical issues will also be discussed.
Finally, we will make some rough estimates of the computational costs of
typical simulations.

1.1. Hydrodynamic Interactions

The canonical model of a colloidal suspension is a dispersion of iden-
tical rigid spheres suspended in an incompressible Newtonian fluid. The
equilibrium distribution of particle positions is identical to that of the hard-
sphere fluid, the fundamental model for all simple molecular liquids.
However, the dynamical properties of a hard-sphere suspension are quite
different from those of a hard sphere fluid, with hydrodynamic interactions
replacing particle-particle collisions as the dominant mechanism for
momentum transfer. From a molecular point of view, hydrodynamic
interactions are the result of correlated momentum transfer from a colloi-
dal particle to solvent molecules, and then from the solvent molecules to
another colloidal particle. (29) Nevertheless, since the length-scale and time-
scale separations between colloidal particles and solvent molecules are at
least two orders of magnitude, we can usually treat the solvent as a con-
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tinuum fluid, (9) whose dynamics are described by the Navier–Stokes equa-
tions for the mass density, r, and momentum density, ru:

“tr+N · (ru)=0

“t(ru)+N · (ruu)+Np=N · s+N · sf,
(1)

where p is the thermodynamic pressure, s is the viscous stress tensor, and
sf is the fluctuating stress. If we make the reasonable assumption that
viscous dissipation is small and does not affect the thermodynamic state,
then the pressure follows an adiabatic equation of state

p(r)=p0+(r − r0) 1
“p
“r
2

s=s0

+ · · · , (2)

where p0 and s0 are the pressure and entropy at the reference density r0.
Thus for small density fluctuations, the equation of state of a liquid or a
gas, Np=c2

s Nr, differ only in the speed of sound cs=`(“p/“r)s. The
viscous stresses are characterized by the shear and bulk viscosities, g and gv,
which we will take to be constants, independent of thermodynamic state
and flow conditions:

s=g[(Nu)+(Nu)† − 2
3 (N · u) 1]+gv(N · u) 1, (3)

where (Nu)† is the matrix transpose of (Nu), and 1 is the unit matrix.
On scales of interest to colloidal suspensions, fluctuations in thermo-

dynamic variables cannot be ignored; in particular, Brownian motion of
colloidal particles is driven by fluctuations in the fluid stress tensor. The
amplitude of these fluctuations can be calculated from statistical thermo-
dynamics, (78) and their time evolution is described by the laws of linear
hydrodynamics. (77) On colloidal time scales ( > 10 − 8s), the components of
sf behave as Gaussian random variables with zero mean and variance: (77)

Osf
ab(r1, t1) sf

cd(r2, t2)P

=2kBT[g(dacdbd+daddbc)+gvdabdcd] d(r1 − r2) d(t1 − t2), (4)

where dacdbd=dacdbd − 1
3 dabdcd is traceless in ab and cd. It should be noted

that Eq. 4 does not describe the instantaneous fluctuations in stress on a
molecular time scale. Rather it expresses the time-dependent relaxation of
stress fluctuations in a form that is local in space and time, yet consistent
with the Green–Kubo expressions for the shear and bulk viscosities. Such
expressions are valid on length and time scales that are large compared
with molecular scales; colloidal suspensions satisfy both these requirements.
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To complete the specification of the fluid-dynamical problem, bound-
ary conditions at the particle-fluid interfaces are needed. It is universally
assumed that a stick boundary condition exists between the solid particle
surfaces and the fluid. In other words the velocity of the fluid adjacent to a
particle surface is equal to the local velocity of the surface at that point; i.e.

u(r)=U+W × (r − R), (5)

for all points r on the surface S, where U, W, R are the particle velocity,
angular velocity, and position. Experimental evidence suggests that this
assumption is quantitatively correct for particles larger than about
30nm. (118) Finally, the forces and torques on the colloidal particles are
obtained by integrating the stress over the particle surface;

F(t)=G
S

t(r) dr

T(t)=G
S

r × t(r) dr,

(6)

where t= − pn+s · n+sf · n is the surface traction and n is the outward
surface normal. The particle dynamics can then be calculated by solving
Newton’s equations of motion, including any inter-particle forces derived
from a conservative potential.

The above formulation is convenient for developing many of the tech-
niques for simulating colloidal suspensions, including lattice-Boltzmann
and finite-element methods. However, there is an alternate formulation
that expresses the time evolution of the particle positions as a set of
coupled stochastic differential equations, (100)

dRN=AN(RN) dt+BNN(RN) · dWN. (7)

AN and BNN are a 3N vector of deterministic coefficients and a 3N × 3N
matrix of stochastic coefficients; the components of WN are independent
Gaussian random variables with zero mean and variance dt. With the
appropriate choice of AN and BNN, (100) an ensemble average over many
initial conditions is equivalent to a solution of the Smoluchowski equation,
which describes the time evolution of the N-particle coordinate distribution
function:

“tP(RN, t)=NN · DNN(RN) · {[NNbF(RN)]+NN} P(RN, t). (8)
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The hydrodynamic mobilities bDNN(RN), required to determine both AN

and BNN (Eq. 7), can be calculated from the steady-state hydrodynamic
interactions between the particles, using the equations for Stokes flow:

N · u=0

Np=gN2u.
(9)

In contrast with the previous formulation, here the fluctuations have been
incorporated directly into the particle dynamics, rather than into the equa-
tions for the fluid motion. This approach is not quite as general as the one
given earlier; in particular it is limited to low Reynolds number flows, or to
particles less than 100 mm in size. Moreover, the assumption of steady state
hydrodynamics makes it impossible to simulate the temporal and spatial
development of hydrodynamic interactions, which has been a subject of
growing interest since the development of experimental probes to study sub-
microsecond time scales. (40, 123) However, it is the foundation for several
important computational methods, including Brownian dynamics (33) and
Stokesian dynamics. (12)

1.2. Suspension Rheology

The rheological characteristics of hard-sphere suspensions have been
explained recently by a combination of theoretical analysis (4, 11, 119) and
numerical simulation. (17, 39, 92, 101) The viscosity of hard-sphere suspensions is
composed of a frequency-independent hydrodynamic stress, coming from
the added resistance to shear caused by fluid flow around the particles, and
a frequency-dependent Brownian stress arising from viscous resistance to
fluctuations in particle position. Theoretical calculations of the viscoelastic
response of hydrodynamic and Brownian stresses (11, 119) are in good agree-
ment with experimental data. (117, 118)

Under a steady external shear rate c, the suspension first exhibits shear
thinning, (39, 101) caused by a reduction in Brownian stress, which culminates
in a second Newtonian region at a Peclet number, Pe=ca2/D, around 10.
At Peclet numbers larger than 10–100, the effects of Brownian motion are
small and the microstructure of the suspension is determined by the exter-
nal shear rate. In this region the hydrodynamic stress increases rapidly, due
to clustering of the particles into transient aggregates, so that the stress
tensor is dominated by the lubrication forces exerted between particle sur-
faces close to contact. (92) It has been shown that the high-shear-rate behav-
ior of an idealized hard-sphere suspension is singular, (13) in that the visco-
sity increases without bound as the shear rate increases. The breakdown of
this singular behavior is controlled by small additional effects, such as
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short-range repulsive forces, which inhibit cluster formation. (17) These
important insights may eventually explain the sensitivity of the high-shear
rate viscosity to small variations in inter-particle forces.

In attempting to develop a fundamental understanding of more
complex suspensions, it is important to differentiate between new physical
effects and well known physical effects manifested in unexpected situations.
For example, the rheology of hard-sphere systems was difficult to compre-
hend until numerical simulations (101) showed that it was a combination of
the different shear-rate dependence of the hydrodynamic and Brownian
stresses. Similarly, numerical simulations (17, 105) are leading to an increased
understanding of the role of ordering in determining the rheology of sus-
pensions of charged particles. However, we note that it is not yet possible
to predict the rheology of suspensions of charged or polymer coated par-
ticles with the same precision as hard-sphere dispersions. (17)

It is clear that numerical simulations will be crucial in obtaining a
fundamental understanding of the dynamics of colloidal suspensions.
However, simulations are limited by their algorithmic complexity, which
makes the computer programs difficult to implement and use, and the
enormous computational resources that are necessary to simulate systems
of macroscopic size. Nevertheless, there are now several different methods
that can be used to simulate suspensions of solid particles under a variety
of different flow conditions. After a brief review of the available simulation
methods, we will present a more detailed review of applications of methods
based on the lattice-Boltzmann model of the fluid. Then we will describe
the basic algorithms in some detail, and give several examples to illustrate
the accuracy and efficiency of the method. We will also describe some
recent technical innovations that can further improve the computational
efficiency.

2. SIMULATION METHODS

Numerical simulations that take explicit account of the hydrodynamic
forces between the suspended particles are becoming useful tools for study-
ing the dynamics of particle suspensions. Brownian dynamics, (33) the pio-
neering simulation method for colloidal suspensions and polymer solutions,
is a stochastic simulation of the time evolution of the Smoluchowski equa-
tion (Eq. 8), typically using a first-order integration of the stochastic dif-
ferential equations (Eq. 7). The crucial approximation in Brownian dyna-
mics is the assumption that hydrodynamic interactions can be represented
by a pairwise-additive sum of two-particle mobility tensors, (33) or ignored
altogether. However, despite the oversimplified hydrodynamic interactions,
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Brownian dynamics gives important qualitative insights into the dynamics
of colloidal suspensions, and can be quantitative in some instances; for
example dilute suspensions of charged particles. (105)

2.1. Stokesian Dynamics

More accurate simulation techniques make use of a reformulation of
the Stokes equations (Eq. 9) as an integral equation for the fluid velocity
field generated by a prescribed force density find:

u(r)=F
V

T(r − r −) · find(r −) dr −, (10)

where T(r)=(8pgr) − 1 (1+r̂r̂) is the Oseen tensor, the Green’s function for
Stokes flow in an infinite domain. The force density is localized to the par-
ticle surfaces, so for spherical particles, the obvious (and optimal) solution
is to expand the force density and velocity field in spherical harmonics.
This leads to a linear system of equations, relating moments of the fluid
velocity on the particle surfaces to moments of find. The hydrodynamic
interactions used in Brownian dynamics are obtained by assuming that the
force density is uniformly distributed over the particle surface. However, in
the presence of other solid particles, the force density is redistributed so as
to satisfy the boundary conditions for the fluid velocity on neighboring
particle surfaces. The problem is analogous to the polarization of inter-
acting charge distributions, and an exact solution requires an infinite
hierarchy of multipole moments.

Stokesian dynamics (12, 31) utilizes a much better approximation to the
hydrodynamic interactions than Brownian dynamics, obtained by truncat-
ing the multipole hierarchy at the L=1 order of spherical harmonics rather
than L=0. An important consequence of including particle torques and
stresses (the L=1 moments of find) is that the interactions between distant
spheres are given exactly, even in the presence of an external shear. The
other significant innovation of Stokesian dynamics was the incorporation
of short-range ‘‘lubrication’’ forces. When two particles are near contact,
the hydrodynamic interactions are dominated by forces originating from
flow in the gap between the particles. Although hydrodynamic interactions
are not additive in general, lubrication forces are an exception and can
simply be added, pair by pair, to the far-field forces. Including lubrication
forces in this way allows a truncated multipole expansion to accurately
represent the hydrodynamic interactions in all particle configurations. This
insight (31) is of fundamental importance to simulations of particle suspen-
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sions, extending beyond Stokesian dynamics and related algorithms. In
practice, no general numerical method can afford the computational cost of
resolving the flow in the narrow gaps between closely-spaced particles, so
lubrication forces always require special treatment.

More accurate calculations of the hydrodynamic interactions are pos-
sible, extending approximate solutions of (Eq. 10) to higher order multi-
poles. (66) However, some properties, for example the permeability and
sedimentation velocity, are slowly converging functions of Lmax and the
added computational cost is high, scaling as at least the 4th power of Lmax.
This approach has been used to calculate accurate values of the hydro-
dynamic transport coefficients of equilibrium configurations of hard
spheres, (67) but not for dynamic simulations. At the present time, even
Stokesian dynamics is too time consuming for dynamical simulations of
more than a few hundred particles. A long-term solution may involve the
adoption of hierarchical multipole (or fast multipole) methods, (108) which
reduce the computation time for calculating the mobility matrix from
O(N2) to O(N) or O(N ln N). Unfortunately a large number of particles
are required before the asymptotic scaling is reached, so the impact of these
innovations may be limited until further increases in computational power
are realized. A completely different approximation makes use of the fact
that for highly concentrated suspensions (solid volume fractions greater
than 50%), the rheology is dominated by the lubrication forces. Thus it has
been proposed that the long-range hydrodynamic interactions be ignored,
and the mobility tensor calculated on the basis of lubrication forces alone. (3)

Within this lubrication approximation, it is possible to simulate the motion
of a few thousand colloidal particles. (17)

Stokesian dynamics has limitations in addition to those imposed by
computational cost. The suspending fluid is assumed to be Newtonian and
to be flowing under conditions approximating Stokes flow (Re=0). More-
over, the method is difficult to extend to suspensions of non-spherical par-
ticles, or to suspensions bounded by container walls. However, recent
innovations are addressing many of these issues (3, 7, 25, 26) and Stokesian
dynamics remains a robust, physically-motivated algorithm, which is
straightforward to use, although quite complicated to code. The Stokes
equations (Eq. 10) can also be solved by boundary-element methods, which
are more flexible than Stokesian dynamics and can be applied to non-
spherical or deformable particles. (81, 95, 102) However, boundary-element
methods are even more computationally demanding than Stokesian dyna-
mics; here the state-of-the-art is represented by simulations of approxi-
mately 100 deformable drops in a shear flow. (127)
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2.2. Time-Dependent Methods

The computational methods described so far have been based on the
classical theory of suspensions, (51) in which the hydrodynamic interactions
are assumed to be fully developed; in other words, where there is a
complete separation of time scales between the dynamics of the fluid and
the motion of the solid particles. In reality, hydrodynamic interactions
develop in time and space from purely local stresses generated at the solid-
fluid surfaces, which then propagate throughout the fluid by diffusive
momentum transport. Several computational schemes attempt to exploit
this spatial locality to develop algorithms whose computational cost scales
linearly with the number of particles; these include lattice-Boltzmann and
finite-element methods, as well as particle-based schemes such as dissipative
particle dynamics. However, for low Reynolds number flows, the compu-
tational gains arising from spatial locality are offset by the additional time
scale required to follow the motion of the fluid.

Until recently, finite-element methods were unable to generate suitable
computational grids for the complex geometries imposed by suspensions of
solid particles. Although very accurate solutions were possible for individ-
ual particles, (38) results for multi-particle suspensions (32, 44) were restricted to
limited numbers of individual configurations, rather than dynamical simu-
lations. However, recent advances in mesh generation techniques have
made dynamical simulations feasible for both spherical and non-spherical
particles. (34, 35) Finite-element techniques are very flexible, in that they can
incorporate inertia and non-Newtonian effects (62) into the fluid dynamics.
On the other hand the algorithms are difficult to develop and code, and
require massive computational resources to run problems of realistic scales.
Finite-element methods have not yet been used to study the dynamics of
colloidal suspensions, although it should be straightforward to include
thermal fluctuations into the fluid stress tensor; random fluctuations with
somewhat different statistics have already been introduced into a finite-dif-
ference code in the context of turbulence modeling. (79) Finite-element (or
finite-difference) simulations can also be carried out on a uniform grid
using embedded point forces to describe the solid-fluid boundary condi-
tions; (37, 47) front-tracking is a necessary complication when the particles are
deformable. (115) Uniform grids may eventually prove to be more efficient
than irregular meshes, due to the computational costs and loss of accuracy
inherent in re-meshing.

It has sometimes been suggested that a suspension can be modeled as a
mixture of large and small particles, but in this case it is practically impos-
sible to enforce the proper time scale separation between hydrodynamic
interactions and particle diffusion. In a colloidal suspension, the time scale
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of the hydrodynamic interactions, yH=ra2/g, is much smaller than the
time scale for colloidal particle diffusion, yD=a2/D. By dimensional
analysis we find that the ratio of these time scales is just the ratio of solvent
molecule size, as, to colloidal particle size, a;

yH

yD
=

rD
g

%
rkBT
g2a

%
as

a
. (11)

Thus a large size ratio (at least 100 : 1) is required to obtain the separation
of time scales that characterizes a colloidal suspension (as opposed to a
molecular solution), making a fully molecular simulation prohibitively
expensive. In dissipative particle dynamics (58) a combination of frictional
and stochastic forces is used to introduce an additional time scale separa-
tion, independent of size ratio. It is not yet clear if this is completely suc-
cessful. (49) Other quasi-particle methods, such as direct simulation Monte
Carlo (8) and smooth particle hydrodynamics, (59, 93) can also be employed to
model particle-fluid systems, (94, 124) but algorithms for dynamic simulations
have not yet been developed.

2.3. Lattice-Gases

The lattice-gas model (42) was introduced in an effort to overcome the
computational barriers hindering simulations of high-Reynolds number
flow. Although this supposition was quickly refuted, (99) it was also realized
that lattice-gas methods might have substantial advantages over Stokesian
dynamics for flows in porous media (106) and colloidal suspensions. (73) It
could be shown that under certain conditions, the large-scale dynamics of a
lattice-gas cellular automaton could be mapped onto the incompressible
Navier–Stokes equations. (41, 42) Moreover, for small deviations from equi-
librium, the equations of fluctuating hydrodynamics (Eq. 1) could be
derived (41) from the intermediate-scale dynamics of the lattice gas. This
connection offered the opportunity to simulate colloidal suspensions, with
hydrodynamic interactions, but without the computational difficulties
involved in calculating the eigenvectors and eigenvalues of the diffusion
tensor.

The lattice-gas model is extraordinarily simple to program, and in its
two-dimensional version, extremely efficient. The update rules can be
written in a few lines of Boolean logic, which are sufficient to update W
sites, where W is the word length of the computer. In the first step fluid
particles are ‘‘collided’’, which means the bits representing them are
rearranged, subject to the constraint of mass and momentum conservation;
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Fig. 1. Schematic representation of the FHP lattice-gas model. The sketch shows the evolu-
tion of a dilute lattice-gas through a single time step, from the initial state (a), through the
collision step (b), to the final state (c).

examples of the possible collisions are shown in Fig. 1a-b. In the second
step, particles are propagated to the neighboring nodes appropriate to their
velocity, as shown in Fig. 1b-c. The first lattice-gas simulation of a colloi-
dal suspension was programmed in a few weeks, and even with a very
rudimentary code, a semi-quantitative calculation of the low-frequency
viscosity of a suspension of 100 hard disks was possible. (73)

The greatest challenge in constructing a lattice-gas model of colloidal
suspensions was to devise rules to simulate the hydrodynamic stick
boundary conditions at the solid-fluid interfaces. The boundary surface is
defined by a set of nodes bordering the perimeter of the solid particle, and
the local velocity of each node is determined by the translational and rota-
tional velocities of the solid particle. In ref. 73 the velocity distribution
function at the boundary nodes was set to the local equilibrium
appropriate to the velocity of the node. However, this distribution neglects
velocity gradients and a more accurate boundary condition was clearly
necessary. A remarkably simple set of rules, which correctly includes the
effects of velocity gradients, was eventually discovered at a workshop
devoted to applications of cellular automata. (74) With these new boundary
rules, the friction coefficients between a pair of spheres could be calculated
to within 1–2% of the exact result, as long as the gap between the particles
was at least one lattice spacing. (75)

Dynamical simulations of a single disk diffusing in a two-dimensional
fluid showed that the coupling between statistical fluctuations and hydro-
dynamics was correctly reproduced. Fig. 2 shows a lattice-gas simulation
of the characteristic double vortex pattern of the velocity field around a
steadily moving disk. A purely hydrodynamic calculation indicates that
the diffusion coefficient of a two-dimensional colloidal particle diverges as
ln t, due to the recirculation of the fluid velocity around the particle (Fig. 2).
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Fig. 2. Lattice-gas simulation of the flow field around a moving disk, showing the double
vortex structure of the diffusing momentum field. (Reprinted from ref. 116).

On the other hand, self-consistent mode-coupling theory shows that the
strength of the divergence is reduced to `ln t by particle diffusion from the
center of the vortex. Both of these effects have been quantitatively
reproduced by lattice-gas simulations. (116) Nevertheless, it was eventually
realized that the colloidal particles have to be very large with respect to the
lattice scale in order to enforce the time-scale separation (Eq. 11) between
hydrodynamics and particle diffusion that characterizes real dispersions.
The time-scale separation problem was eventually solved with a fluctuating
lattice-Boltzmann model, (68) where the amplitude of the thermal fluctua-
tions could be controlled independently of the particle size.

3. LATTICE-BOLTZMANN METHOD

Lattice-Boltzmann simulations were originally introduced (90) to sim-
plify the macroscopic dynamics of the lattice-gas model by removing the
effects of thermal fluctuations. The averaging inherent in the Boltzmann
equation leads to Navier–Stokes dynamics, rather than the fluctuating
variant given in Eq. 1. Lattice-Boltzmann simulations of three-dimensional
flows typically use linearized collision operators, (56) which simplify the
complex collision rules of three-dimensional lattice gases, (30) at the cost of
unconditional stability. A crucial advantage of linearized collision opera-
tors is that equilibrium distributions can be constructed that lead to
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Galilean invariant forms of the hydrodynamic equations. (23, 89, 104) Further
developments in lattice-Boltzmann simulation techniques are summarized
in a recent review article. (22)

The concepts developed for lattice-gas simulations of colloidal sus-
pensions were readily adapted to the lattice-Boltzmann model. (69) In
particular, the stochastic rules at the solid-fluid boundaries reduce to a
deterministic collision operator. The lattice-Boltzmann methodology has
been validated by an exhaustive sequence of comparisons with theory,
experiment, Stokesian dynamics, and finite-difference methods; (70) some
key results, together with more recent calculations, are summarized in
Sections 6 and 7.

The fundamental quantity in the lattice-Boltzmann model is the
discretized one-particle velocity distribution function ni(r, t), which
describes the mass density of particles with velocity ci, at a particular node
of the lattice r, at a time t; r, t, and ci are discrete, whereas ni is continuous.
The hydrodynamic fields, mass density r, momentum density j=ru, and
momentum flux P, are moments of this velocity distribution:

r=C
i

ni, j=ru=C
i

nici, P=C
i

nicici. (12)

For simulations of particulate suspensions, the lattice-Boltzmann model
has two particularly useful properties. First, the connection to molecular
mechanics makes it possible to derive simple local rules for the interactions
between the fluid and the suspended solid particles. (69) Second, the discrete
one-particle distribution function, ni, contains additional information about
the dynamics of the fluid beyond that contained in the Navier–
Stokes equations; in particular, the fluid stress tensor, although dynami-
cally coupled to the velocity gradient, (41) has an independent significance at
short times. This additional flexibility allows us to simulate molecular fluc-
tuations on a mesoscopic scale (see Section 8); i.e. length scales of
10 − 6 − 10 − 9m and time scales of 10 − 6 − 10 − 9s. To do this, random fluctua-
tions, uncorrelated in space and time, are added to the fluid stress ten-
sor. (68) Statistical correlations in the particle positions and velocities follow
from the hydrodynamic decay of these random fluctuations in fluid stress.
This approach is quite different from Brownian dynamics (33) or Stokesian
dynamics, (10) where correlated fluctuations are applied directly to the par-
ticles.

It is interesting that the lattice-Boltzmann model, with uncorrelated
fluctuations in the fluid, contains physics beyond Stokesian dynamics. In
Fig. 3, lattice-Boltzmann simulations of the decay of transient translational
(U) and rotational (W) velocities are compared with the corresponding
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Fig. 3. Decay of the initial velocity (solid symbols) and the decay of the velocity correlation
function of an isolated sphere (open symbols with error bars). Lattice Boltzmann simulations
are compared with analytic results (solid line). (52) (Reprinted from ref. 70).

analytic solutions. (52) It can be seen that the lattice-Boltzmann simulations
quantitatively reproduce the decay of the particle velocities, including the
hydrodynamic memory effects that lead to an algebraic decay at long
times. By contrast, Stokes flow hydrodynamics leads to an exponential
decay of the particle velocity, which is qualitatively incorrect. Figure 3 also
shows the decay of translational and rotational velocity correlation func-
tions in the fluctuating lattice-Boltzmann fluid. The close agreement
between the ensemble averaged velocity correlation functions and the decay
of initial transients shows that the system obeys the fluctuation-dissipation
relation. The time scales required for the temporal development of the
hydrodynamic interactions make it computationally demanding to simulate
configurational changes in a colloidal suspension by this technique, but
such calculations are nevertheless feasible.

Lattice-Boltzmann simulations have also been used to investigate an
apparent scaling in the temporal development of hydrodynamic interac-
tions in dense colloidal suspensions. Experimental results from Diffusing
Wave Spectroscopy (125) suggested that velocity correlations in dense sus-
pensions have the same time dependence as a single particle (see Fig. 3),
but with a time scale, ra2/g(f), set by the viscosity of the suspension,
rather than the viscosity of the fluid. The surprising observation was that
this scaling apparently persisted to very short times, well before viscous
momentum diffusion could be expected to establish the collective hydro-
dynamic interactions described, in a mean-field approximation, by the
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suspension viscosity. Initial lattice-Boltzmann simulations obtained a
similar scaling, (68) but more precise simulations (82) showed that the scaling is
not exact. The deviations from scaling were just too small to be detected
within the errors of the earlier experiments and calculations.

Particles larger than a few microns tend to settle out of suspension,
due to gravitational forces dominating over the diffusive flux arising from
gradients in particle concentration. The detailed dynamics of the most
idealized flow, the sedimentation of hard spheres in the absence of inertia
and Brownian motion is still controversial. When a suspension sediments,
each particle experiences a different shielding of the fluid drag, due to the
fluctuating arrangements of its neighbors. These hydrodynamic interactions
are long range, decaying asymptotically as 1/R. They drive large fluctua-
tions in particle velocity, which for particles more than about 10mm in
diameter completely dominate the thermal Brownian motion. A relatively
simple calculation shows that if the particle positions are uncorrelated at
large distances, the velocity fluctuations diverge as the container size is
increased. (16) It was suggested (64) that hydrodynamic interactions could be
screened by changes in suspension microstructure, analogous to the screen-
ing of electrostatic interactions in charged systems. However, lattice-
Boltzmann simulations have shown that in a homogeneous suspension
(with periodic boundary conditions), particles are distributed randomly at
separations beyond a few particle diameters and the velocity fluctuations
diverge with increasing container size, in agreement with theory. (71, 72)

Nevertheless, two different sets of experiments have found that the velocity
fluctuations converge to a fixed value for sufficiently large systems. (97, 110)

Recent theories have suggested that screening could arise from a convec-
tion-diffusion mechanism, coupling hydrodynamic diffusion and density
fluctuations to the gravitational field. (80, 114) On the other hand, it has also
been suggested that the container walls may play an important role in the
experimental observations. (15, 84) We have recently carried out a sequence of
simulations, with up to 36000 solid particles, to search for changes in sus-
pension microstructure caused by the container walls. In these calculations
the velocity fluctuations were observed to saturate with increasing con-
tainer dimensions, as observed experimentally, but contrary to earlier simula-
tions with periodic boundary conditions. Taken together, the simulation
results suggest that saturation may be caused by inhomogeneities introduced
by the container walls. (76)

As the particle size increases beyond the colloidal range, fluid inertia
can be important. Pressure-driven flows in fixed beds of cylinders (63) and
spheres (57) have been investigated by extensive lattice-Boltzmann simula-
tions, at Reynolds numbers up to about 200. One of the interesting discov-
eries of this work was that a complex sequence of instabilities exists in
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Fig. 4. Temporal variation of the angle of the mean flow h for the P17 oscillation at Re =
187 for a square array of disks. The area fraction is 0.4 and the pressure gradient was directed
along the line x=y. (Reprinted from ref. 63).

periodic arrays of cylinders and spheres. Although at low Reynolds number
the flow in a periodic array is independent of the direction of the pressure
gradient, at higher Reynolds numbers, the flow is very sensitive to the
orientation of the pressure gradient with respect to the symmetry directions
of the lattice. For example, if the pressure gradient is directed along one of
the principle axes of a square lattice of cylinders, then, for Reynolds
numbers in the range 150-200, a classical period doubling sequence is
observed. As the pressure gradient is increased, there are well defined
Reynolds numbers where the repeat period doubles. However, if the pres-
sure gradient is oriented at 45o to a principle axis, the initial instability
suddenly makes a transition to a sequence of instabilities with a much
longer overall repeat period. As an illustration of this work, the angle of
the mean flow for a period 17 oscillation is shown in Fig. 4. It can be seen
that the lattice-Boltzmann simulation gives a beautiful repeating pattern,
with an exact recurrence of the initial state every seventeen periods.

Lattice-Boltzmann methods have also been extended to suspensions of
non-spherical particles. (103) Remarkably, the underlying lattice does not
seriously affect the rotation of non-spherical particles. Simulations of the
dynamics of disks (2) and ellipses (103) have been compared with finite-element
simulations of identical systems. (34) These completely independent calcula-
tions are in almost exact agreement with one another, which provides a
nice validation of both computational methods and their detailed imple-
mentations.
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4. A 3D LATTICE-BOLTZMANN MODEL

The time evolution of the velocity distribution function, ni(r, t), is
described by a discrete analogue of the Boltzmann equation, (41)

ni(r+ciDt, t+Dt)=ni(r, t)+Di[n(r, t)], (13)

where Di is the change in ni due to instantaneous molecular collisions at the
lattice nodes and Dt is the time step. The time evolution of a lattice-gas is
described by a similar equation, except that the continuous population
densities are replaced by discrete bit fields. The collision operator Di(n)
depends on all the ni’s at the node, denoted collectively by n(r, t). It can
take any form, subject to the constraints of mass and momentum conser-
vation. A computationally useful form for the collision operator can be
constructed by linearizing about the local equilibrium neq, (56) i.e.

Di(n)=Di(neq)+C
j
Lijn

neq
j , (14)

where Lij are the matrix elements of the linearized collision operator,
nneq

j =nj − neq
j , and Di(neq)=0. The computational utility of lattice-gas and

lattice-Boltzmann models depends on the fact that only a small set of
velocities are necessary to simulate the Navier–Stokes equations. (42)

A particular lattice-Boltzmann model is defined by a set of velocities
ci, an equilibrium distribution neq

i , and the eigenvalues of the collision
operator. The population density associated with each velocity has a weight
aci that describes the fraction of particles with velocity ci in a system at rest;
these weights depend only on the speed ci and are normalized so that
;i aci=1. Note that the velocities ci are chosen such that all particles move
from node to node simultaneously. For any cubic lattice,

C
i

acicici=C2c21, (15)

where c=Dx/Dt, Dx is the grid spacing, and C2 is a numerical coefficient
that depends on the choice of weights. However, in order for the viscous
stresses to be independent of direction, the velocities must also satisfy the
isotropy condition;

C
i

aciciacibciccid=C4c4{dabdcd+dacdbd+daddbc}. (16)

In three dimensions, isotropy requires a multi-speed model; for example the
18-velocity model described in ref. 69. This model uses the [100] and
[110] directions of a simple cubic lattice, with twice the density of particles
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moving in [100] directions as in [110] directions; alternatively a 14-veloc-
ity model can be constructed from the [100] and [111] directions with a
density ratio of 7 : 1. Although the 14-velocity model requires less compu-
tation and less memory than the 18-velocity model, it suffers from
‘‘checkerboard’’ invariants (65) and is less accurate. The 18-velocity model
can be augmented by stationary particles, which then enables it to account
for small deviations from the incompressible limit (Section 5.4), although in
simulations of stationary flows we have found the numerical differences to
be small. However, the extension to 19 velocities should lead to substantial
improvements in the equipartition of energy between particles and fluid in
simulations of Brownian suspensions (Section 8.1). In Sections 5 and 8 we
present an update of the theory given in ref. 69, to reflect the improvements
brought about by including stationary particles. We have not found any
additional improvement in accuracy when simulating incompressible flows
with a more complex model involving 27 velocities ([000], [100], [110],
and [111] directions). However, larger sets of velocities can increase the
global stability and are necessary to simulate coupled heat and momentum
transport.

4.1. Equilibrium Distribution

The form of the equilibrium distribution is constrained by the moment
conditions required to reproduce the inviscid (Euler) equations on large
length scales and time scales. In particular, the second moment of the equi-
librium distribution should be equal to the inviscid momentum flux
p1+ruu:

r=C
i

neq
i (17)

j=C
i

neq
i ci=ru (18)

Peq=C
i

neq
i cici=rc2

s1+ruu (19)

The equilibrium distribution can be used in Eqs. 17 and 18 (c.f. Eq. 12)
because mass and momentum are conserved during the collision process; in
other words

C
i

nneq
i =C

i
nneq

i ci=0. (20)

The pressure in Eq. 19, p=rc2
s, takes the form of an ideal gas equation of

state with adiabatic sound speed cs. It is also adequate for the liquid phase
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if the density fluctuations are small (i.e. the Mach number M=u/cs ° 1),
so that Np=c2

sNr.
For small Mach numbers, the equilibrium distribution can be

expanded as a power series in u · ci/c2
s, and it then follows from Eq. 19 that

the weights must be chosen so that C2=(cs/c)2; i.e.

C
i

acicici=c2
s1. (21)

A suitable form for the equilibrium distribution of the 19-velocity model
that satisfies Eqs. 17–19, as well as the isotropy condition (Eq. 16), is (104)

neq
i =aci 5r+

j · ci

c2
s

+
ruu : (cici − c2

s1)
2c4

s

6 , (22)

where cs=`c2/3, and the coefficients of the three speeds are

a0=1
3 , a1= 1

18 , a`2= 1
36 . (23)

In this case the coefficient in Eq. 16 is C4=(cs/c)4.
In contrast to the equilibrium distributions of lattice-gas models, (42)

Eqs. 22 and 23 ensure that the inviscid hydrodynamic equations are
correctly reproduced. The viscous stresses come from moments of the
non-equilibrium distribution, as in the Chapman–Enskog solution of the
Boltzmann equation. The fundamental limitation of this class of lattice-
Boltzmann model is that the Mach number be small, less than 0.3; our
suspension simulations always keep M < 0.1.

4.2. Collision Operator

The linearized collision operator must satisfy the following eigenvalue
equations;

C
i
Lij=0, C

i
ciLij=0, C

i
ciciLij=lcjcj, C

i
c2

iLij=lvc
2
j , (24)

where cici, indicates the traceless part of cici. The first two equations follow
from conservation of mass and momentum (c.f. Eq. 20), and the last two
equations describe the isotropic relaxation of the stress tensor; the eigen-
values l and lv are related to the shear and bulk viscosities and lie in the
range − 2 < l < 0. Equation 24 accounts for only 10 of the eigenvectors of
L. The remaining 9 modes are higher-order eigenvectors of L that are not
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relevant to the Navier–Stokes equations, but which do affect the boundary
conditions at the solid-fluid interfaces. In general the eigenvalues of these
kinetic modes are set to − 1, which both simplifies the simulation and
ensures a rapid relaxation of the non-hydrodynamic modes. (69)

In a dilute gas without internal degrees of freedom, energy conserva-
tion requires that the eigenvalue of the bulk viscous mode (lv in Eq. 24) is
zero. Since our model does not include energy conservation, the bulk
viscous mode is free to relax, so as to account for all the viscous stresses
present in a dense fluid. Alternatively, we can imagine a polyatomic gas
where energy can be absorbed into internal degrees of freedom and lv is
again non-zero.

The collision operator can be further simplified by taking a single
eigenvalue for both the viscous and kinetic modes. (20, 104) This exponential
relaxation time (ERT) approximation, Di= − nneq

i /y, has become the most
popular form for the collision operator because of its simplicity and com-
putational efficiency. However, the absence of a clear time scale separation
between the kinetic and hydrodynamic modes can sometimes cause signifi-
cant errors at solid-fluid boundaries (see Section 6.1), and thus we prefer
the more flexible collision operator described by Eq. 24.

In our suspension simulations we use a 3-parameter collision operator,
allowing for separate relaxation of the 5 shear modes, 1 bulk mode, and 9
kinetic modes. The post-collision distribution na

i =ni+Di is written as a
series of moments (Eq. 12), as for the equilibrium distribution (Eq. 22),

na
i =aci 1r+

j · ci

c2
s

+
(ruu+Pneq, a) : (cici − c2

s1)
2c4

s

2 . (25)

The zeroth (r) and first (j=ru) moments are the same as in the equilibrium
distribution (Eq. 22), but the non-equilibrium second moment Pneq is
modified by the collision process, according to Eq. 24:

Pneq, a=(1+l) Pb neq+1
3 (1+lv)(Pneq : 1) 1, (26)

where Pneq=P − Peq. The kinetic modes can also contribute to the post-
collision distribution, but we choose the eigenvalues of these modes to be
− 1, so that they have no effect on na

i . Equation 26 with l=lv= − 1 is
equivalent to the ERT model with y=1; for l < − 1, the kinetic modes
relax more rapidly than the viscous modes, which is the proper limit for
hydrodynamics.
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4.3. External Forces

In the presence of an externally imposed force density f, for example a
pressure gradient or a gravitational field, the time evolution of the lattice-
Boltzmann model includes an additional contribution fi(r, t),

ni(r+ciDt, t+Dt)=ni(r, t)+Di[n(r, t)]+fi(r, t). (27)

The forcing term can be expanded in a power series in the particle velocity;
i.e.

fi=aci 5A+
B · ci

c2
s

+
C : (cici − c2

s1)
2c4

s

6 Dt, (28)

where A, B, and C are determined by requiring that the moments of fi are
consistent with the hydrodynamic equations. Then the zeroth and first
moments are given by ;i fi=A=0 and ;i fici=BDt=fDt (Eq. 37). The
second moment, C, is usually neglected, but in that case the external force
contributes terms of order ufDt to the momentum flux (Eq. 40), which do
not appear in the macroscopic equations. We describe two ways in which
these extraneous terms can be accounted for. If these terms are cancelled by
taking C=uf+fu, (85) a multi-scale expansion (Section 5) shows that a dif-
ferent definition of the momentum density is required (see Section 5.3),
namely

j −=ru −=C
i

nici+
Dt
2

f. (29)

However, if the conventional definition of the momentum flux (Eq. 12) is
retained, the expression for C must be modified to account for discrete
lattice effects (Eq. 47). Nevertheless, for a spatially uniform force, numeri-
cal simulations show that variations in C have a negligible effect on the
flow.

4.4. Stationary Flows

At low Reynolds numbers, the evolution of a time-independent flow
field can be extremely slow, especially in systems of very high porosity (i.e.
dilute suspensions) or very low porosity (i.e. porous rocks). In such cir-
cumstances the lattice-Boltzmann method typically requires 104 − 105 cycles
to reach steady state. However, a new numerical method has been devel-
oped (120) to directly simulate the equations for Stokes flow (Eq. 9). The
method is based on the lattice-Boltzmann approach, but utilizes an implicit
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solution of time-independent equations, rather than the usual temporal
evolution to steady state.

For low Reynolds numbers, a simplified form for the equilibrium dis-
tribution can be used, ignoring terms in ruu, (69)

neq
i =aci 1r+

j · ci

c2
s

2 . (30)

Setting the viscous eigenvalues l=lv= − 1, the update of the lattice-
Boltzmann equation can be rewritten in terms of the mass and momentum
densities at each node:

ni(r+ciDt, t+Dt)=neq
i (r, t)+fi(r, t)

=aci 1r(r, t)+
[j(r, t)+f(r, t) Dt] · ci

c2
s

2 , (31)

where the non-linear forcing can be ignored (Re=0). Taking moments of
Eq. 31, linear equations for the time evolution of the mass and momentum
densities are obtained. At steady state ni(r, t+Dt)=ni(r, t), and the result-
ing linear system of equations can be efficiently solved with the bi-
conjugate gradient method. (48) It should be noted that this linear system is
under-determined, since the velocity boundary conditions do not set the
mean mass density in the system. The total mass, which is usually an initial
condition, has to be included as an additional constraint.2 With careful

2 In ref. 120 we stated that the time-independent equations for the distribution function are
under-determined and can only be solved by projecting onto the mass and momentum den-
sities. However, we have since discovered that this is incorrect, and that the stationary dis-
tribution function can be solved for directly, once the mass constraint is included.
Nevertheless, the method described in ref. 120 is much more efficient computationally, since
it involves only 4 variables per node rather than 18 or 19.

programming, the new algorithm requires about 50% more memory and
computational time per cycle than the conventional lattice-Boltzmann
model, but reduces the number of cycles by up to two orders of magnitude
at the extremes of porosity (low and high). The computational speed can
perhaps be further improved by pre-conditioning the coefficient matrix.

5. MACROSCOPIC DYNAMICS

The macrodynamical behavior arising from the lattice-Boltzmann
equation can be found from a multi-time-scale analysis, (41) using an expan-
sion parameter E, defined as the ratio of the lattice spacing to a character-
istic macroscopic length; the hydrodynamic limit corresponds to E ° 1.
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Exact conservation equations for the moments of the distribution function
can be derived from Eq. 27:

C
i

ni(r+ciDt, t+Dt) cn
i

=C
i

ni(r, t) cn
i +C

i
C

j
Lijn

neq
j (r, t) cn

i +C
i

fi(r, t) cn
i . (32)

where cn
i represents a tensor of rank n, comprising the outer products of

vectors ci. The scaling parameter E plays a similar role to the Knudsen
number in the Chapman–Enskog method, (18) separating the relaxation of
equilibrium and non-equilibrium distributions;

ni=neq
i +En1

i , (33)

where nneq
i =En1

i . However, because the lattice spacing and the mean-free
path are comparable, there are additional contributions to the viscous
momentum flux, which do not appear in the ordinary kinetic theory of
gases. In order to remove discrete lattice artifacts from the macroscopic
equations, a macroscopic space scale r1=Er is defined, together with two
macroscopic time scales t1=Et and t2=E2t. The propagation of sound (t1

time scale), which involves first-order spatial derivatives, is then mathema-
tically separated from the diffusion of vorticity (t2 time scale), which
involves second-order spatial derivatives. (41) The external force density
enters the multi-scale expansion at order E.

5.1. First-Order Expansion

Expanding the finite differences, ni(r+ciDt, t+Dt) − ni(r, t), in Eq. 32
about r and t, and collecting terms that are first order in E, we obtain the
relaxation of the moments of ni on the t1 time scale:

“t1
r+N1 · (ru)=A1, (34)

“t1
(ru)+N1 · (rc2

s1+ruu)=B1, (35)

“t1
(rc2

s1+ruu)+N1 · C
i

neq
i cicici

=
l

Dt
Pb 1+

lv

3Dt
(P1 : 1) 1+A1c

2
s1+C1, (36)

where the first-order momentum flux P1=;i n1
i ciacib=E − 1Pneq, and

A=EA1, B=EB1, and C=EC1 are the coefficients in Eq. 28. The gradient
operator refers to derivatives on the macroscopic space scale r1, i.e.
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N1 — “r1
. To recover the Euler equations from Eqs. 34 and 35, the first two

coefficients in Eq. 28 must be

A=0, B=f. (37)

Equation 36 can be simplified by using Eqs. 34 and 35 to express the
time derivatives of r and ru in terms of spatial derivatives,

“t1
(rc2

s1+ruu)

= − c2
s[(uN1r)+(uN1r)†+(N1 · ru) 1]+uB1+B1u+O(u3), (38)

and evaluating the spatial derivative of the third-order moment directly
from Eqs. 22 and 23,

N1 · C
i

neqcicici=c2
s[(N1ru)+(N1ru)†+(N1 · ru) 1]. (39)

The error term in Eq. 38 is of order u2/c2
s=M2 in comparison to the

leading order terms, and can be neglected for incompressible or nearly
incompressible flows. Combining these results with Eq. 36, the momentum
flux on the t1 time scale is given by

l

Dt
Pb 1+

lv

3Dt
(P1 : 1) 1

=rc2
s[(N1u)+(N1u)†]+uB1+B1u − C1+O(u3). (40)

Equation 40 can be rearranged to give the momentum flux P1 in terms of
velocity gradients and external forces,

P1= − sc
1+

Dt
l

[uB1+B1u − C1]+
Dt
3lv

[2u · B1 − C1 : 1] 1. (41)

The collisional stress tensor, sc
1, has the form of the Navier–Stokes stress

(c.f. Eq. 3),

sc
1=gc[(N1u)+(N1u)† −

2
3

(N1 · u) 1]+gc
v(N1 · u) 1. (42)

with independent shear and bulk viscosities:

gc= − rc2
sDt

1
l

, gc
v= − rc2

sDt
2

3lv
. (43)
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If the coefficient of the forcing is taken to be C=uf+fu, then the momen-
tum flux reduces to the Navier–Stokes expression for the viscous stresses,
P1= − sc

1. This is the expression for C given in ref. 85 and is the same as in
the Chapman–Enskog solution of the Boltzmann equation. However, for
the lattice-Boltzmann equation, there are additional contributions to the
viscous stresses, which modify the viscosities and the forcing. These
corrections can be found from the second-order terms in the E-expansion,
using the expression for the momentum flux (Eq. 41) where C remains
undetermined.

5.2. Second-Order Expansion

The t2 relaxation of the mass and momentum densities can be found
from the order E2 terms in the expansion of Eq. 32:

“t2
r+

Dt
2

N1 · B1=0, (44)

“t2
(ru)+

Dt
2

N1 · [rc2
s(N1u)+rc2

s(N1u)†+uB1+B1u]

=N1 · sc
1 −

Dt
l

N1 · [uB1+B1u − C1] −
Dt
3lv

N1 · [2u · B1 − C1 : 1]1

−
Dt
2

“t1
B1+O(u3). (45)

In this section it will be assumed that any external forcing is time indepen-
dent, so that “t1

B1=0. In the absence of external forcing, the fluid is
incompressible on the t2 time scale (Eq. 44); all density fluctuations decay
on the t1 time scale by propagation of sound waves. If the force density is
uniform, the fluid is still incompressible on the t2 time scale, but if f is spa-
tially varying, density fluctuations relax more slowly and may interfere with
the viscous momentum diffusion. However, if the external force is a gravi-
tational field, so that f=rg with g a uniform gravitational acceleration, the
fluid remains incompressible for low Mach number flows (Nr % O(M2): c.f.
Eq. 57).

The terms in square brackets on the left hand side of Eq. 45 are
an artifact of the discrete lattice and do not appear in the continuous
Boltzmann equation. However, the first two terms can be absorbed into the
definition of the viscous stress, s1, analogous to Eq. 42, but with an addi-
tional lattice contribution to the shear and bulk viscosities (c.f. Eq. 43):

g= − rc2
sDt 11

l
+

1
2
2 , gv= − rc2

sDt 1 2
3lv

+
1
3
2 . (46)

Lattice-Boltzmann Simulations of Particle-Fluid Suspensions 1215



These lattice contributions to the viscosity have been known for a long
time, but in order to remove all traces of the external force from the t2

momentum relaxation we must also include the lattice contribution to the
forcing, proportional to uf as suggested in ref. 85, but with a coefficient
given by

C=1
2 (2+l)(uf+fu)+1

3 (2+lv)(u · f) 1. (47)

Then the momentum diffusion can be written in Navier–Stokes form

“t2
(ru)=N1 · s1+O(u3), (48)

with relative errors of order M2.
The shear and bulk viscosities characterizing s1 can be adjusted by

varying the eigenvalues l and lv (Eq. 46), but a linear stability analysis
shows that eigenvalues must be bounded in the range − 2 < l < 0. (56, 89) The
bounds on l and lv correspond to the simple physical requirement that the
viscosities are positive. For a particular choice of viscosity, there is a
unique definition of the forcing (Eqs. 28, 37, and 47) that removes all
lattice artifacts from the momentum equation to order u3.

For a complete error analysis, the multi-scale expansion must be
extended to order E3. Although explicit calculations are rather lengthy, it
can be shown that both “t3

r and “t3
(ru) are of order u2. Thus the largest

error terms are of order E2u3 and E3u2; the fourth-order terms in the multi-
scale expansion are at least order E4 and most likely E4u. Convective flows
are of order Eu and diffusive flows are of order E2u, so that for sufficiently
low velocities the convergence is quadratic in the lattice spacing. The
Navier–Stokes equations are recovered by combining the relaxation of the
mass and momentum densities on the t1 and t2 time scales (“t=E“t1

+E2
“t2

,
N=EN1):

“tr+N · (ru)=0

“t(ru)+N · (ruu)+Nrc2
s=f+N · s,

(49)

where the stress tensor is given by Eq. 3 and the viscosities by Eq. 46.

5.3. Modified Momentum Density

It was shown in the previous section (5.2) that the usual definition of
the momentum density (Eq. 12) requires an external force density that
involves the eigenvalues of the viscous stress tensor (Eq. 47). Here we show
that a simpler and more flexible result is possible, using a redefinition of
the momentum density that includes the external force density (Eq. 29).
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Moreover, this new definition of the momentum density is more consistent
with results obtained using constant velocity boundary conditions than the
normal definition of the momentum density (70) (see Section 6).

The continuity equation obtained from the t1 (Eq. 34) and t2 (Eq. 44)
timescales contains a term proportional to f,

“tr+N · (ru)+
Dt
2

N · f=0, (50)

which we have previously argued is small if the system is in a uniform gra-
vitational field (see Section 5.2). Nevertheless, with the modified definition
of the velocity field (c.f. Eq. 29),

u −=u+
Dt
2

g, (51)

the exact continuity equation is obtained, (45)

“tr+N · (ru −)=0, (52)

even for spatially varying force densities or accelerations (f=rg).
The coefficient C in the external force density is taken to be

C=uf+fu, as in the continuous Boltzmann equation, and the t2 evolution
of the momentum density can then be written as (c.f. Eqs. 45),

“t2
(ru)+

Dt
2

“t1
B1+

Dt
2

N1 · [uB1+B1u]=N1 · s1+O(u3). (53)

The combined equation for the momentum density follows by ignoring
terms of order E3 and higher;

“t(ru −)+N · (ru −u −)+Nrc2
s=f+N · s −, (54)

where s − indicates that the modified velocity field is used. In obtaining this
equation we have ignored a convective term of order Dt2N · rgg and viscous
terms of order DtNrNg, both of which are of order E3. The first term is also
proportional to u2 and thus is the same order as other error terms. The
second term is only proportional to u and so introduces a larger error when
g is spatially varying, but for a uniform external field the second term
vanishes.

5.4. Limiting Cases

The viscosity in the lattice-Boltzmann model is not independent of
density as expected from kinetic theory, but has a linear density depen-
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dence, g 3 r; the reason is that the lattice-Boltzmann collision rate is
independent of density rather than inversely proportional to density as it is
for a dilute gas. However, under most circumstances of physical interest the
effects of this discrepancy are negligible.

At low Mach numbers, the Navier–Stokes equations can be re-scaled
to the equations of incompressible fluid flow. Using a characteristic length
scale, L, and fluid velocity, U, the re-scaled equations are

“tr+N · (ru)=0

“t(ru)+N · (ruu)+
1

M2 Nr=
1

UL
N · s.

(55)

Expanding the density and velocity in powers of M=U/cs about the
incompressible limit r0 and u0 (r0 is constant) (86)

r=r0(1+Mr −

1+M2r −

2...)

u=u0+Mu1+M2u2...,
(56)

it follows that r −

1=0, and thus the density variations are of order M2. At
order M0 we obtain the incompressible fluid equations

N · u0=0

“tu0+u0 · Nu0+Nr −

2=
1

Re
N2u0,

(57)

with deviations of order M2. The pressure variations in an incompressible
fluid are equivalent to the second order variations in density (Nr2) in the
low Mach number limit. Lattice-Boltzmann simulations of the incompres-
sible Navier–Stokes equations have been validated by detailed comparisons
with finite-difference and spectral methods; (23, 88, 89) a review of this work
can be found in ref. 22.

The incompressible limit is appropriate to most macroscopic flows.
However the decay of spontaneous thermal fluctuations takes place on
shorter time scales t % L/cs ° L/U. In this case, it can no longer be
assumed that the density fluctuations are negligible, so Eq. 57 no longer
applies. However, since the fluctuations are small, it is legitimate to
linearize the equations to small variations about equilibrium, r=r0,
u=0: (41)

“tr
−+N · u=0

“tu+c2
sNr −=nN2u+(nl − n)N(N · u),

(58)
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where r −=r/r0, n=g/r, and nl=(4
3 g+gv)/r. Again the spatial variation

of the transport coefficients can be ignored. It is possible to derive lattice-
Boltzmann models that are incompressible on the t1 time scale, (53) but the
behavior of these models in response to random thermal fluctuations is not
yet known.

6. SOLID-FLUID BOUNDARY CONDITIONS

To simulate the hydrodynamic interactions between solid particles in
suspension, the lattice-Boltzmann model must be modified to incorporate
the boundary conditions imposed on the fluid by the solid particles. Sta-
tionary solid objects were first introduced into lattice-gas simulations by
replacing the normal collision rules at a specified set of boundary nodes
by the ‘‘bounce-back’’ collision rule, (41) in which incoming particles are
reflected back towards the nodes they came from. Surface forces are cal-
culated from the momentum transfer at each boundary node and summed
to give the force and torque on each object. (69) In contrast to finite-differ-
ence and finite-element methods, where local surface normals are required
to integrate the stresses over the particle surface, the bounce-back rule
eliminates these complications by directly summing the surface forces.

6.1. Bounce-Back Rules

Theoretical analysis of the bounce-back rule for two-dimensional
channel flow has shown that the location of the zero-velocity plane is
shifted from the location of the boundary nodes, into the fluid, by an
amount D=0.5Dx+O(L − 1), (27, 45) where L is the channel width. For plane
surfaces, the solution can be interpreted in terms of a hydrodynamic
boundary displaced into the fluid by half a lattice spacing from the physical
one. (126) An alternative to the ‘‘nodal bounce-back’’ rule is to place the
boundary nodes midway between interior (solid) and exterior (fluid)
nodes. (74, 113) The normal collision rules are carried out at all fluid nodes,
and augmented by bounce-back rules at the midpoints of links connecting
lattice nodes on either side of the particle surface. In this case it can be
shown (54) that the hydrodynamic boundary is now located at the boundary
nodes (i.e. midway between lattice nodes), again with deviations of order
L − 1. In Poiseuille flow both the ‘‘link bounce-back’’ and the ‘‘displaced
nodal bounce-back’’ rules give velocity fields that deviate from the exact
solution by a constant slip velocity, us=uLBE − uExact, proportional to
L − 2; (54)

us/uc=bDx2/L2, (59)
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where uc=L2 |Np|/8n is the exact velocity at the center of the channel and
the coefficient b depends on the eigenvalues of the collision operator.
However, the nodal bounce-back and link bounce-back rules can be signi-
ficantly different if the solid surface is moving with respect to the fluid (see
the end of Section 7.1).

For the ERT model with non-dimensional relaxation time y=
− l − 1, (54)

b=1
3 (16y2 − 20y+3), (60)

whereas for the linear collision operator in ref. 69

b=1
3 (4y − 5). (61)

The displacement, D, of the hydrodynamic boundary from the physical
boundary can be expressed in terms of b; for small displacements,
D= − bDx2/4L. Thus, the bounce-back rule leads to a 2nd-order accurate
velocity field, although the location of the hydrodynamic boundary is only
first-order. The hydrodynamic boundary and the physical boundary are
coincident for sufficiently wide channels, whereas if the velocity field were
only first-order accurate, the displacement of the hydrodynamic boundary
would tend to a constant for large L.

For small viscosities (i.e. y Q 1
2) b Q − 1, independent of collision

model, but for y > 1 the ERT slip velocity is sensitive to viscosity and
diverges as y2 for large y (Eq. 60). However, for collision operators that
include a time-scale separation between the kinetic and hydrodynamic
modes (see Section 4.2, Eq. 24), the slip velocity diverges only linearly with
y (Eq. 61), and for y > 2 is at least an order of magnitude smaller than in
the ERT model. (43)

In the presence of an external force density f= − Np, a further
complication arises from the discrete time step of the lattice-Boltzmann
model (Eq. 27). In most published work, the velocity field ru=;i nici is
measured before the application of the force density, but it could equally
well be measured afterwards. The velocity fields before (u) and after (u+)
applying the force density are related,

ru+=ru+f Dt. (62)

Thus the slip velocities defined in Eqs. 60 and 61 depend on when the
velocity field is measured. To decide on the correct choice for the definition
of the velocity field, we can compare results obtained with an external
pressure gradient with those obtained with another method of driving the
fluid flow. In ref. 70, pressure-driven flow past a periodic arrays of spheres
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was compared with a constant velocity boundary condition. In the latter
case, a quasi-periodic system, with several unit cells in the flow direction,
was used to obtain the proper inlet and outlet boundary conditions at the
central cell. The mean flow velocity and drag force were measured for this
central cell only; different numbers of cells were taken to ensure that there
were no artifacts introduced by the boundary conditions at the ends of the
system. The results for quasi-periodic systems agreed exactly with results
obtained with a pressure gradient, if the mean of the velocity field before
and after forcing, u −=(u++u)/2, was used. (70) Moreover, this definition of
the momentum density is also consistent with the Navier–Stokes equations
(Section 5.3). The corrected slip velocities from Eqs. 60 and 61 are there-
fore

b=1
3 (16y2 − 16y+1) (63)

for the ERT model, and

b=1
3 (8y − 7) (64)

for the linear collision operator in ref. 69. We note that boundary condi-
tions that have been tuned to give u=0 at the solid-fluid interface (54) are no
longer exact if we take the velocity field

ru −=ru+1
2 fDt. (65)

The velocity field in a channel flow is not very sensitive to the defini-
tion of the fluid velocity, but the differences are significant in a low poro-
sity medium, where the velocity field at the same pressure gradient is much
smaller. As further evidence that the velocity field should be measured in
the middle of the forcing step (Eq. 65), startup flows in a two-dimensional
channel have been simulated and compared with analytic results. At t=0 a
uniform pressure gradient was applied and the velocity in the channel was
compared with the exact solution as a function of time. The coefficient
bRMS(t) characterizing the time-dependent slip velocity (c.f. Eq. 59),

bRMS(t)=1 L
Dx

23/2 1;y [uLBE(y, t) − uExact(y, t)]2

u2
Exact(L/2, t)

21/2

(66)

is shown in Fig. 5 for the different velocity measurements. The root-mean-
square error in the velocity field, relative to the velocity at the centerline, is
bRMSDx2/L2, and for stationary flows, bRMS is equivalent to the slip coeffi-
cient b defined in Eq. 59. In each case we have chosen the viscosity of the
fluid such that the slip velocity vanishes at steady state; for velocity fields
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Fig. 5. Startup of a pressure driven flow in a two-dimensional channel. Errors in lattice-
Boltzmann results are derived by comparison with the exact solution.

measured before, after, and in the middle of the forcing, the relaxation
times were y=5

4, y=3
4, and y=7

8 respectively. During startup, the error in
the velocity field is a factor of 4 smaller when it is measured after half the
force has been applied (Eq. 65) than in the other two cases.

6.2. Link-Bounce-Back Rules for Particles

The link-bounce-back boundary condition is straightforward to
implement, even for non-planar surfaces. Solid particles are defined by a
boundary surface, which can be any size or shape; in Fig. 6 it is a circle.
The boundary surface cuts some of the links between lattice nodes, and
fluid particles moving along these links interact with the solid surface at
boundary nodes placed halfway along the links. Thus we obtain a discrete
representation of the particle surface, which becomes more and more
precise as the particle gets larger. Lattice nodes on either side of the
boundary surface are treated in an identical fashion, so that fluid fills the
whole volume of space, both inside and outside the solid particles.
However, because of the relatively small volume inside each particle, the
interior fluid quickly relaxes to rigid-body motion, characterized by the
particle velocity and angular velocity. For stationary particles the interior
fluid is at rest and can be ignored.

Although the link-bounce-back rule is second order accurate for
planar walls oriented along lattice symmetry directions, it is only first order
for channels oriented at arbitrary angles. (45, 46) Thus for large channels, the
hydrodynamic boundary is displaced by an amount D from the physical
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Fig. 6. Location of the boundary nodes for a circular object of radius 2.5 lattice spacings.
The velocities along links cutting the boundary surface are indicated by arrows. The locations
of the boundary nodes are shown by solid squares and the lattice nodes by solid circles.
(Figure reprinted from ref. 69).

boundary, where D is independent of L but depends on the orientation of
the channel. However, second-order convergence can be recovered by
taking the channel width as L − 2D, rather than L. Convex bodies sample a
variety of boundary orientations, so that it is not possible to make an
analytical determination of the displacement of the hydrodynamic bound-
ary from the solid particle surface. Nevertheless, the displacement of the
boundary can be determined numerically from simulations of flow around
isolated particles. By considering the size of the particles to be the hydro-
dynamic radius, a+D, rather than the physical radius a, approximate
second-order convergence can be obtained for dense suspensions. (70)

Numerical calculations have shown that for relaxation times close to
unity, the displacement of the boundary surface is small, less than 0.05Dx.
However to simulate flow at non-zero Reynolds numbers, it is often neces-
sary to reduce the viscosity in order to keep the Mach number small. In a
study of inertial flow in periodic and random arrays of cylinders (63), a
kinematic shear viscosity of 0.01Dx2/Dt (y=0.53) was used, giving an
upper limit to the Reynolds number of approximately 5L/Dx (with
M < 0.1), where L is the characteristic spatial dimension. For particles
larger than about 5Dx the hydrodynamic boundary is displaced into the
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fluid by a constant amount D=0.3Dx. For smaller particles there are
additional deviations, since the physical size itself is not uniquely defined.

It has been shown (70) that the hydrodynamic radius depends only on
particle size and fluid viscosity, but not on the particle configuration, flow
geometry or Reynolds number. Thus, it is a well-defined physical param-
eter that can be determined by a single calibration experiment. Fluid flow
through a periodic array of cylinders has been used for both calibration,
and as a test of the effectiveness of the bounce-back rule in a typical sus-
pension geometry. The present calculations are an extension of published
work (70) to include simulations with a 1000-fold variation in fluid viscosity.
Cylinders of nominal radius 2.5, 7.5, 22.5, and 67.5 lattice units have been
used to simulate flow at an area fraction of approximately 40%; the ratio of
the drag force to the mean flow velocity was compared with essentially
exact results, (107) as described in ref. 70. The drag force at this density is
large, FD % 220gU, so this calculation is a severe test of the method.

The relative errors shown in Fig. 7 are based on the nominal radius of
the disk (left) and on the hydrodynamic radius (right), which was obtained
by fitting the measured drag coefficient at an area fraction of 10%. If the
comparisons with ref. 107 are based on the nominal radius of the disk,
approximately linear convergence with increasing resolution is observed.
From the previous discussion it is clear that the hydrodynamic boundary
has been displaced from the physical one, which is determined by the loca-
tion of the boundary nodes. The displacement of the boundary is particu-
larly severe when the relaxation time deviates significantly from unity. For

Fig. 7. Relative errors in the drag coefficient of a periodic array of cylinders at zero
Reynolds number. The errors are computed for different cylinder radii and for different fluid
viscosities, using the numerical solutions of Ref. (107) as a reference. The different symbols cor-
respond to the values of the kinematic viscosity indicated in the legend. The convergence
obtained using the nominal radius of the cylinder (left figure) can be compared with that
obtained using the hydrodynamic radius of the cylinder (right figure). The straight lines in the
left and right figures have slopes of − 1 and − 2 respectively.
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the smallest viscosity, the relative error in the drag force is more than 5%,
even for the largest particle (a=67.5). It is clear that the shift in the loca-
tion of the hydrodynamic boundary must be accounted for if quantitative
results are to be obtained with computationally useful particle sizes (typi-
cally less than 10 lattice units) and viscosities significantly different from
1/6. The right hand figure shows that once the hydrodynamic radius is
taken into account, the errors in the drag force are reduced by an order of
magnitude. Moreover the convergence is now almost quadratic in the
resolution, except for the largest fluid viscosity, n=5/3 (y=5.5). In this
case the slip velocity is rather large, as it is for a flat surface.

6.3. Continuous Bounce-Back Rules

A substantial effort has been invested to improve upon the accuracy of
the bounce-back boundary condition at planar walls, typically using
information from neighboring nodes to predict the non-equilibrium distri-
bution at the boundary nodes. (24, 36, 87, 91, 98, 112) A variant of these schemes
uses the full velocity distribution function at a node to deduce the local
velocity gradient. (46) These methods share the drawback that they require
information about the shape of the particle surface. For general three-
dimensional objects, the resulting algorithms are complex and not neces-
sarily well defined without additional constraints. (87, 98) As a result these
methods have only been applied to planar surfaces and two-dimensional
objects. By contrast, the bounce-back rule can be applied to surfaces of
arbitrary shape, without additional complications. However, for second-
order convergence the bounce-back rule requires a calibration of the
hydrodynamic radius, which is not always convenient.

The bounce-back method enforces the no-slip boundary condition by
controlling the momentum flux at the solid-fluid interface. More sophis-
ticated variants of this scheme can be constructed, which take better
account of curved and misaligned surfaces, (21, 121) but still control the
momentum flux rather than the distribution function. Extrapolation based
methods (24, 36, 87, 91, 98, 112) are problematic if two surfaces are in close proxi-
mity, which is a common occurrence in multi-particle suspensions, whereas
flux control methods are completely local. Recently we have developed a
modification of the bounce-back rule to account for partially filled cells. (121)

The method uses a volumetric formulation, (6, 19) where the population
density is assumed to be distributed throughout the Wigner–Seitz cell
surrounding the lattice-node. It retains an important feature of the bounce-
back rule, in that it does not require surface normals. Instead it represents
the effects of an inclined plane by a sequence of partially filled cells, as
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Fig. 8. Schematic representation of the different geometries discussed in the text. The gray
areas represent the solid phase, and the arrows indicate the population densities after propa-
gation of a population density in cell 1 moving from left to right. The solid dots indicate the
location of the mean population density in each cell or fraction of a cell. The heavy lines in (c)
and (d) indicate an inclined boundary represented by the sequence of partially filled cells.
(Reprinted from ref. 121).

shown in Fig. 8. Although the method may be less accurate than that
described in ref. 21, it has the advantages of simplicity and flexibility, and
can be easily applied to irregular geometries.

The basic idea of the method, which we call ‘‘continuous bounce
back’’, can be understood from the sequence of diagrams in Fig. 8, showing
the reflection of an incoming population density moving from left to right.
In (a) the interface lies midway between the lattice nodes, as in the link
bounce-back method; here the volumetric interpretation reduces to the link
bounce-back method. Fig. 8(b) illustrates the volumetric rule in the
simplest partial node case, with a population density propagating from cell
1 into a partially filled cell 2, with fluid fraction a2. Here a fraction 1 − 2a2

is reflected back into cell 1, a fraction a2 is reflected in cell 2, and a fraction
a2 propagates to cell 2, but is not reflected. The updated population densi-
ties are calculated assuming a linear variation in population density from
cell 1 to cell 2, which is necessary for second-order accuracy in offset
channels.

In Fig. 9a, we show the velocity profile for Poiseuille flow in a channel
of width L=3Dx, with the boundaries displaced from the lattice by a frac-
tion of Dx. The agreement with the analytic result is surprisingly good,
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Fig. 9. Poiseuille flow in a shifted channel. a) Flow profile j(x) for a channel-width
L=3Dx; the theoretical mean momentum flow j0=L2Np/12n. b) Mean relative error E(L) in
the flow profile. The open circles are the simulation results where the walls coincide with the
interface between two cells. The solid symbols are for walls shifted with respect to the lattice
in increments of Dx/10: in increasing order these go from solid circles (0.1Dx) to diamonds
(0.5Dx). The solid lines indicate the asymptotic 1/L2 decay of E(L). (Reprinted from ref. 121).

even though the channel is narrow; the largest deviations occur for
channels shifted by 1

2 Dx and are of the order of 10%. The mean relative
error in the flow profile decreases as 1/L2, as shown in Fig. 9b. For
L \ 5Dx, E(L) is less than 4%, while the error in the location of the hydro-
dynamic boundary is less than 0.05 lattice spacings. We obtained similar
results for Poiseuille flow in channels of non-integer widths.

In most situations of practical interest the system changes rapidly from
fluid to solid, typically with only one partially filled cell in between.
However, more complicated geometries do arise, in which the solid-fluid
interface extends over more than one cell. We approximate an inclined
boundary extending over two cells by the geometry shown in Fig. 8c, so
that during the propagation step a fraction of the population density is
reflected in cell 1, while the remainder is reflected in cell 2. The height c12 is
determined by continuity between the two cells. The propagation rule now
consists of the sum of two contributions, each of them determined by the
same basic rules discussed in reference to Fig. 8b and multiplied by
appropriate fractional weights. More general geometries (Fig. 8d) are
handled by straightforward extensions of these rules; details of the method
can be found in ref. 121. It should be noted that although the assignment
of the heights cij=

1
2 (ai+aj) is non-local, extending over a maximum of 4

cells, the actual lattice-Boltzmann update is a sequence of local updates
applied to pairs of population densities.

The continuous-bounce-back rules extend second-order convergence to
channels of non-integer width, but in angled channels the convergence is
still only first order. Nevertheless, the magnitude of the error is reduced by
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Fig. 10. Reduced drag coefficient FD of a square array of disks, obtained with the continu-
ous bounce-back rules (a) and link bounce-back rules (b), for different positions of the center
of the disk with respect to the lattice: in the center of a cell (Q), in the corner of a cell (I) and
at two random positions (§ and ©). The solid line is the theoretical result (107) at the same
porosity, 9p/64=0.442. (Reprinted from (121)).

up to a factor of 5 for a given channel width. The new rules have been
tested by simulating fluid flow through periodic arrays of disks and
spheres, which utilize a mixture of the different types of boundary configu-
rations. In Fig. 10, the reduced drag coefficient of a square array of disks,

FD= − L2Np/gOuP, (67)

has been plotted as a function of the radius of the disk R=3L/8. The
results show two important improvements over the link bounce-back
method: i) The drag coefficient obtained with the continuous bounce-back
rules is virtually independent of the position of the center of the disk with
respect to the lattice, and ii) the error in FD is much smaller and the con-
vergence to the asymptotic value is second order. For a cubic array of
spheres the spread in FD is even smaller than for disks, most probably due
to a higher degree of averaging over the different types of boundaries.
However, if the relaxation time is reduced to simulate higher Reynolds
number flows, then the hydrodynamic radius will again differ from the
physical one.

The new boundary rules allow for a reduction in resolution in typical
simulations by a factor of two to four; in three dimensional simulations a
factor of two reduction in resolution translates into at least a 16-fold
reduction in computer time and an 8-fold reduction in memory. Although
the continuous bounce-back rules are more complicated to implement than
link bounce back rules, the additional computational overhead is small. We
have combined the continuous bounce-back rules with a direct solution of
the Stokes equations, (120) to obtain a very fast algorithm for calculating
fluid flow in porous media. The time taken to calculate the velocity field
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in a realistic fracture geometry has been reduced from 400 hours to
3.5 hours. (122) Finally, we expect that the method can also be adopted to
simulations of particle suspensions by modifying the reflected population
densities to take account of the moving interface. (69)

7. HYDRODYNAMIC INTERACTIONS

The generalization of the bounce-back rule to describe moving surfa-
ces (74) made quantitative lattice-gas and lattice-Boltzmann simulations of
particle suspensions possible. To understand the physics of the moving
boundary condition, one can imagine an ensemble of particles, moving at
constant speed ci, impinging on a massive wall oriented perpendicular to
the particle motion. The wall itself is moving with velocity ub ° ci. The
velocity of the particles after collision with the wall is − ci+2ub and the
force exerted on the wall is proportional to ci − ub. Since the velocities in the
lattice-Boltzmann model are discrete, the desired boundary condition
cannot be implemented directly, but we can instead modify the density of
returning particles so that the momentum transferred to the wall is the
same as in the continuous velocity case. This is the essence of the physics,
described somewhat differently, in refs. 69 and 74. The stochastic version of
the rule was derived first, (74) allowing for the discrete population density
that characterizes lattice-gas models.

7.1. Moving Boundary Condition

At each boundary node (see Fig. 6) there are two incoming distribu-
tions na

i (r, t) and na
i− (r+ciDt, t), corresponding to velocities ci and ci−

(ci−= − ci) parallel to the link connecting r and r+ciDt; the notation
na

i (r, t)=ni(r, t)+Di(r, t) is again used to indicate the post-collision distri-
bution (Eq. 25). In some cases boundary nodes for two perpendicular links
may be coincident (see Fig. 6); these are treated independently. The velocity
of each boundary node, ub, is determined by the solid particle velocity U,
angular velocity W, and center of mass R,

ub=U+W × (rb − R), (68)

where rb=r+1
2 ciDt. By exchanging population density between ni and ni−,

we can modify the local momentum density of the fluid to match the
velocity of the solid particle surface at the boundary node, without affect-
ing either the mass density or the stress, which depend only on the sum
ni+ni−.

The mechanism for boundary-node interactions is illustrated in Fig. 11.
In Fig. 11a the incoming populations at a stationary node are reflected
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Fig. 11. Population densities before and after collision with a boundary node. The effects of
stationary (a) and moving (b and c) boundary nodes on the incoming populations are shown.
The arrows indicate the velocity direction and the lengths of the solid lines are proportional to
the population densities. The differences between population densities are highly exaggerated
for clarity. Note that the effects of the moving boundary are the same in (b) and (c), because
the velocity component parallel to the link direction is the same in both cases. (Reprinted
from ref. 69).

back in the direction they came from, which is just the link-bounce-back
rule. For a moving node (Figs. 11b and 11c), population density is
transferred across the boundary node, in proportion to the velocity of the
node ub,

ni(r+ciDt, t+Dt)=na
i− (r+ciDt, t)+

2acirub · ci

c2
s

,

ni−(r, t+Dt)=na
i (r, t) −

2acirub · ci

c2
s

.

(69)

Only the velocity component along the link direction (ub · ci) is included in
the calculation of population transfer; thus the outcomes in Figs. 11b
and 11c are the same, while for stationary nodes (ub=0) the bounce-back
condition is recovered. The coefficient of the ub · ci term is determined by
the requirement that any distribution consistent with the boundary-node
velocity ub is stationary with respect to interactions with the boundary
nodes. For example, the distribution ni−(r, t+Dt) can be written in terms of
the moments of the distribution n(r, t), using Eqs. 25 and 69:

ni−(r, t+Dt)=ni(r, t)

+
aci

2c4
s

1lPb neq+
lv

3
(Pneq : 1) 12 : (cici − c2

s1) −
2acirub · ci

c2
s

. (70)
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For times longer than t1, the non-equilibrium momentum flux Pneq can be
replaced by a velocity gradient (Eq. 40),

ni−(r, t+Dt) − ni(r, t)

=
acir

c2
s

(ci · Nu · ciDt − c2
sN · uDt − 2ub · ci). (71)

In addition, Eq. 25 can be used to replace ni(r, t) with ni−(r, t)+
2aciru · ci/c2

s, and since ub=u+1
2 ci · NuDt+...,

ni−(r, t+Dt) − ni−(r, t)= − acirN · uDt=aci“trDt+O(M2). (72)

Thus for stationary flows Eq. 69 is consistent with a boundary-node veloc-
ity, ub. It should be noted that the local density r(r, t) appears in the equa-
tion for the moving boundary condition (Eq. 69), but we have typically
used the mean density (r0) instead, since it simplifies the update procedure.
The differences between the two methods are small, of the same order (ru3)
as the error terms in Eq. 38. Test calculations show that even large varia-
tions in fluid density (up to 10%) have a negligible effect on the force (less
than 1 part in 104).

As a result of the boundary node updates, momentum is exchanged
locally between the fluid and the solid particle, but the combined momen-
tum of solid and fluid is conserved. The forces exerted at the boundary
nodes can be calculated from the momentum transfer in Eq. 69,

f 1 rb, t+
1
2

Dt2=
2Dx3

Dt
5na

i (r, t) − na
i− (r+ciDt, t) −

2acirub · ci

c2
s

6 ci. (73)

The particle forces and torques are obtained by summing f(rb) and rb × f(rb)
over all the boundary nodes associated with a particular particle. It can be
shown analytically that the force on a moving wall in a linear shear flow is
exact, (69) and several numerical examples of lattice-Boltzmann simulations
of hydrodynamic interactions are given in ref. 70.

The velocity-dependent bounce-back rule can also be implemented
using nodal bounce-back boundary conditions. (74, 75) However in this case,
the moving bounce-back rule must also be applied to nodes inside the par-
ticle surface. This can lead to a pressure drop in the gap between two
closely-spaced particles and thereby cause an artificial attraction between
the particles. (5)
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7.2. Lubrication

When two spheres approach each other there is a strong repulsive
force, caused by fluid being squeezed out of the gap between the particles.
These lubrication flows generate very high pressures in the gap, which are
difficult to resolve with either a grid-based code or a multipole code.
Although it is possible to use adaptive meshes to resolve the flow in the
gap, a more computationally tractable solution is to calculate the singular
forces separately by lubrication theory. (31) This idea has been incorporated
into a lattice-Boltzmann model, (72) adding the normal lubrication force
between two spheres:

F lub
ij = −

6pg(aa −)2

(a+a −)2 R̂ijR̂ij · (ui − uj) 1
1

Rij − a − a −
−

1
Dc

2 , (74)

where a and a − are the radii of the spheres.3 Dc is the cut off for the added

3 Equation 9 of ref. 72 is missing a factor of 2 in the denominator.

lubrication force; for gaps (Rij − a − a −) larger than Dc the lattice-Boltzmann
model captures the full hydrodynamic interactions between the spheres,
and F lub

ij =0. Recent research has shown that a value of Dc=
2
3 Dx is suitable

for all sphere sizes. (96) This is quite consistent with earlier work, (70) which
showed that the lattice-Boltzmann method reproduced the hydrodynamic
interactions between pairs of spheres down to gaps of 1 lattice spacing.
Figure 12 shows lattice-Boltzmann simulations of the lubrication interac-
tion between a sphere and a plane wall. The lattice-Boltzmann simulations
(solid symbols) agree almost perfectly with the exact solution (14) down to
gaps less than 1 lattice spacing. Thus for successively larger particles, the
lubrication force can be calculated at smaller and smaller gaps, relative to
the particle size. Including the short-range lubrication force (Eq. 74 with
a −=. and Dc=

2
3 Dx) brings about almost perfect agreement with Bren-

ner’s solution (14) for spheres more than about 5 lattice spacings in diameter
(open symbols). The tangential lubrication can be included in a similar
fashion, using the appropriate expressions for the singular forces and
torques. (28, 61) Tangential forces have a weaker logarithmic divergence, and
here the optimum cut off was found to be Dc=Dx, (96) again independent of
particle size.

The lubrication forces can be large for particles pushed close to
contact, and an explicit velocity update (69) is quite unstable. We have
therefore developed an implicit pair-by-pair update of the lubrication
interactions, (96) which is stable for all particle separations. Assuming that
the particle coordinates are essentially unchanged during a single time step,
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Fig. 12. Lubrication forces normal to a plane wall. The friction coefficients (t) from lattice-
Boltzmann simulations are compared with exact solutions of the Stokes equations; t0=6pga
is the Stokes drag coefficient.

the relative velocity of a pair of spheres can be found from the ordinary
differential equation

mu̇ij= − zuij, (75)

where z is a configuration-dependent friction coefficient, taken from
Eq. 74, and uij is the relative velocity projected along the line of centers.
The relative velocity at the end of the time step is then simply related to
that at the beginning of the step, uij(Dt)=uij(0) e − zDt/m. By transforming to
a coordinate system where the separation vector Rij is parallel to one of the
principal axes, (28) the complete lubrication interaction between a pair of
spheres can be updated implicitly by solving coupled pairs of ordinary dif-
ferential equations.

When two particles are close to contact, it can happen that they share
a common boundary node. As they move towards each other, these par-
ticles should be expelling fluid from their interior, giving rise to a high
pressure in the gap between the two surfaces, but the absence of a fluid
node between the surfaces prevents this from happening. The missing
forces can be compensated for as described above, but these shared nodes
also upset the overall mass balance between fluid flowing into and out of
the particle. When shared nodes occur, there can be a slow loss or gain of
fluid from the interior of the particle, preventing the system coming to
steady state. We have found that the best solution is to first determine the
total mass transfer across the particle surface, which in the absence of
shared nodes is identically zero. Any excess mass can be uniformly distrib-
uted over the boundary nodes, with only a very small change in the force
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and torque. The drawback of this procedure is that it requires an extra pass
over the boundary nodes, but it allows the particles to smoothly approach
one another, all the way to contact.

7.3. Inertia

The lattice-Boltzmann method works without modification for flows
where the Reynolds number is non-zero, although as the Reynolds number
increases, larger particles are required for the same accuracy. (63) Here we
show one example of a finite Reynolds number flow, examining the lift
force on a cylinder in close proximity to a plane wall. (60) Lattice-Boltzmann
simulations of the drag and lift forces on the cylinder are shown in Fig. 13
and compared with accurate finite-difference calculations (60) under the same
flow conditions. The simulations were carried out for two different cylinder
sizes, and drag coefficients were calculated down to a gap of 1 lattice
spacing between the particle and the wall. It can be seen from Fig. 13 that
the drag coefficients are in essentially exact agreement with the finite-dif-
ference calculations. However, the lift force is a much more sensitive test of
the simulation, since it is a purely inertial effect and vanishes in the low
Reynolds number limit. It is encouraging that quantitative agreement is
obtained in this case as well; the only significant deviation is for the smaller
cylinder at a distance of 1 lattice spacing from the wall. Quantitative com-
parisons of dynamic simulations with corresponding finite-element cal-
culations have also been reported. (2, 103)

Fig. 13. Lift force on a cylinder (radius a) near a moving planar boundary (velocity U) at a
Reynolds number Re=7. The dimensionless coefficients C=F/(parU2) (F is the force per
unit length on the cylinder) are shown for the drag force (left) and lift force (right). The results
of lattice-Boltzmann simulations (60) are compared with finite-element calculations in an iden-
tical geometry.
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7.4. Interior Fluid

In accounting for the momentum transfer at a moving wall, mass is
locally conserved by the presence of the interior fluid. The particles
comprise a solid shell of given mass and inertia, filled with fluid of the
same mass density as the bulk fluid. It has been claimed that this model is
unphysical, (1) but the pertinent issue is to what extent do the dynamics of
these fluid-filled particles differ from the dynamics of solid particles. This
question was addressed in section 5 of ref. 70; here we summarize the
important findings. The parameter characterizing the motion of the interior
fluid is the non-dimensional frequency wg=wa2/nint where a is the sphere
radius and nint is the kinematic viscosity of the interior fluid, which can be
different from that in the exterior flow region. Numerical results show that
the drag force on an oscillating sphere is independent of the interior fluid
as long as wg < 1. The reduced frequency can be made arbitrarily small by
increasing the viscosity of the interior fluid. Furthermore, it was shown
that to lowest order in the frequency, flow in the interior fluid contributes a
viscosity independent term that is exactly equal to the inertia of the interior
fluid. Deviations from the inertial drag are generally small, proportional to
the square of the frequency to leading order. Thus the particle behaves
dynamically as if its mass is the sum of the shell mass, used to compute the
change in shell velocity arising from hydrodynamic forces, and the mass of
the interior fluid. Effects of the interior fluid on the particle dynamics are
small so long as the contribution of the interior fluid to the inertia of the
particle is taken into account.

Alternative methods have been proposed in which fluid is excluded
from the interior of the particle, (2, 55) which then behaves as a solid object
described by its shell mass and inertia. The change in local mass density is
proportional to the local velocity of the boundary node and averages to
zero when summed over the whole particle surface. However global mass
conservation may be violated when two surfaces are close to contact,
without intervening fluid (c.f. Section 7.2). Attempts to maintain local mass
conservation without interior fluid (1) are fundamentally flawed, and lead to
incorrect pressure distributions around the solid particle. More recent
simulations (2) show excellent agreement between lattice-Boltzmann simula-
tions and finite-element calculations, (34) independent of the presence or
absence of interior fluid, so long as the shell mass and inertia are adjusted
accordingly. Thus we conclude that accurate simulations can be carried out
with or without interior fluid.

There are drawbacks to both of these schemes. The instantaneous
fluctuations of fluid-filled particles are larger than those of solid particles
with the same total mass, since the interior fluid does not have sufficient
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time to respond to changes in velocity of the shell. On the other hand, if the
interior fluid is excluded, it is then necessary to add fluid with the correct
mass and momentum density to solid sites being vacated as the particle
moves, and to similarly remove fluid from sites being covered by the par-
ticle. A perturbation is thereby added to the fluid flow whenever a particle
changes position. Nevertheless, it should be emphasized that both methods
give results in good agreement with one another and with independent
finite-element simulations. (2) An alternative method of removing the effects
of the interior fluid has been proposed recently. (55) Here the boundary
nodes are updated as in Eq. 69, but the momentum thus transferred to the
interior fluid is later put back into the particle and the interior fluid
momentum is reset to zero. While this method works very well for particles
that do not move with respect to the grid, (55) it remains to be seen if this
method or that proposed in ref. 2 move the particles across the mesh as
smoothly as the method described in ref. 72.

7.5. Velocity Update

In ref. 70 particle velocities were determined from an explicit update,

U(t+Dt)=U(t − Dt)+
2F(t) Dt

M
, (76)

where velocities are updated every other time step to minimize the effects of
the staggered momentum invariants. (90) There is a stability criterion for
Eq. 76 and its rotational equivalent, (70) which can be expressed as a condi-
tion on the effective mass density of the solid particle (including the mass
of the interior fluid),

rs

rf
> 1+

10
a

. (77)

This stability criterion imposes a serious constraint on the size of particles
which can be used to simulate realistic particle-fluid systems for which
rs/rf % 2. However, an implicit velocity update has been proposed (83) that
is unconditionally stable. Schematically,

U(t+Dt) − U(t)=
[F0(t) − lU(t+Dt)] Dt

M
, (78)

where F0(t) is the part of the particle force arising from the zero-velocity
bounce-back rule and lU(t+Dt) comes from the velocity-dependent part of
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the boundary update. (70) The coefficient l resembles a friction coefficient,
and is determined by the distribution of boundary nodes on the particle
surface. An explicit update replaces the unknown velocity U(t+Dt) on the
right-hand side of Eq. 78 by U(t) (as in Eq. 76), but an unconditionally
stable update can be achieved by solving Eq. 78 for U(t+Dt) directly. The
drawback of this new scheme is that it takes two sweeps through the
boundary nodes. The first sweep is used to determine F0 so that U(t+Dt)
can be found; this involves solving six coupled equations for the transla-
tional and rotational velocities of each particle. The second sweep uses the
new velocities to finish the boundary node updates.

Further complications arise when we consider the consequences of
particle displacements. One possibility is to keep track of the actual particle
coordinates but only update the boundary node positions when the particle
center moves nearer to an adjacent lattice site than to its current one. Thus
the boundary-node map is always centered on a lattice node and the par-
ticle shape is constant in time (for spherical particles). This approach has
two drawbacks. The first problem is that the translation of the boundary
node map by a distance of the order of one lattice spacing introduces a
significant discontinuity into the fluid flow. The second problem is that an
additional check is required before the boundary node map is moved, to
ensure that there are no overlapping maps. Even in moderately dense sus-
pensions this leads to ‘‘traffic jams’’ with boundary node maps that are
unable to move to the correct locations. A better solution is to move the
boundary-node maps continuously, so that discontinuities in fluid motion
are small and traffic jams do not arise. In this case the particle shape fluc-
tuates with changes in particle position, but the effects of these shape fluc-
tuations are small if the particle radius is more than about 5Dx. Fluctua-
tions in particle shape can be minimized by using continuous bounce-back
collision rules (121) (see Section 6.3).

8. FLUCTUATIONS

The lattice-Boltzmann model can be extended to simulate thermal
fluctuations, which lead to Brownian motion of colloidal particles. The
fluctuating lattice-Boltzmann model (68) incorporates a random component
into the momentum flux during the collision process (c.f. Eq. 26):

Pneq, a=(1+l) Pb neq+1
3 (1+lv)(Pneq : 1) 1+Pf

Pf=zRb+zvRv1,
(79)
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where Rv is a Gaussian random variable with zero mean and unit variance,
and R is a symmetric matrix of Gaussian random variables of zero mean.
The off-diagonal elements of R have a variance of 1, while the diagonal
elements have a variance of 2. In this particular implementation, 6 random
numbers are required to generate the components of the symmetric matrix
R, together with the constraint that Rb is traceless. The average stress fluc-
tuations are local in space and time, as in Eq. 4, with a variance given by

OPf
abPf

cdP=z2(dacdbd+daddbc)+z2
vdabdcd. (80)

An analogy with Eq. 4 suggests that

z=12kBTg

Dx3Dt
21/2

zv=12kBTgv

Dx3Dt
21/2

, (81)

but it will be seen that the discrete lattice again modifies the result for con-
tinuous fluids, (69) so that Eq. 81 is not entirely correct. Instead, the coeffi-
cients will be determined by relating the decay of long wavelength stress
fluctuations to the viscosity of the lattice-Boltzmann fluid.

8.1. Discrete Green–Kubo Relation

The volume integral of the stress,

S(t)= − Dx3 C
r ¥ V

[P(r, t) − Peq(r, t)], (82)

is only affected by collisions and not by propagation of particle densities.
The time evolution of S can therefore be written as

S(t+Dt)=(1+l) S(t)+1
3 (1+lv)(S(t) : 1) 1+Sf(t), (83)

where Sf(t)= − Dx3 ;r ¥ V Pf(r, t) is the random stress. Equation 83 is a
discrete Langevin equation of the form

s(t+Dt) − s(t)= − as(t)+f(t), (84)

with random force f(t) and a > 0. It is shown in the Appendix of ref. 69
that

Os(nDt) s(0)P=(1 − a)n Os2P, (85)
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and that fluctuations in s are related to fluctuations in f by

Os2P=
Of2P

2a − a2 . (86)

Combining Eqs. 85 and 86 we obtain the discrete equivalent of the time-
integral of the correlation function >.

0 Os(t) s(0)P dt, namely

1
2
Os2P+ C

.

t=Dt
Os(t) s(0)P=11

a
−

1
2
2 Os2P=

Of2P

2a2 . (87)

Similarly, the low-frequency correlations of the integrated stress S(t) are
related to the instantaneous fluctuations in the random stress OSfSfP=
NDx6OPfPfP,

1
2
OSabScdP+ C

.

t=Dt
OSab(t) Scd(0)P

=
z2VDx3

2l2 (dacdbd+daddbc)+
z2

vVDx3

2l2
v

dabdcd, (88)

where the number of lattice points in the fluid N=V/Dx3.
The left hand side of Eq. 88 is the discrete equivalent of the

Green–Kubo integral (50) relating the viscosity to equilibrium fluctuations in
the stress; for example

g=
1

VkBT
F

.

0
OSxy(t) Sxy(0)P dt. (89)

The stress fluctuations in the fluctuating lattice-Boltzmann model can be
made consistent with the discrete Green–Kubo formula,

1
2
OSabScdP+ C

.

t=Dt
OSab(t) Scd(0)P

=
gVkBT

Dt
(dacdbd+daddbc)+

gvVkBT
Dt

dabdcd, (90)

by an appropriate choice for the amplitudes of the random fluctuations in
Eq. 88; i.e.

z=12kBTgl2

Dx3Dt
21/2

, zv=12kBTgvl
2
v

Dx3Dt
21/2

. (91)
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The additional factor of `l2 (c.f. Eq. 81) is a consequence of discrete
lattice artifacts. For the choice of eigenvalues l=lv= − 1, an exact corre-
spondence with the fluctuation-dissipation relation for continuous systems
is obtained. However the discrete version (Eq. 91) can also be applied to
systems where the viscous eigenvalues are not equal to − 1. (69)

8.2. Momentum Fluctuations

In the previous Section (8.1) the discrete Green–Kubo formulae for the
shear and bulk viscosity (Eq. 90) were obtained by replacing the time
integral in Eq. 89 by a summation. Here it is shown that Eq. 90 can be
derived directly from the instantaneous fluctuations in momentum den-
sity. (41) Moreover, the connection between temperature and the strength of
the random forcing is made clear. It will be more convenient to work in
Fourier space, defining the Fourier transform of the velocity distribution
function as

n −

i(k, t)=Dx3 C
r ¥ V

e − ık · r[ni(r, t) −OniP], (92)

where OniP=acir0 is the ensemble-averaged value of ni. Again the volume
of the cell associated with each node of the lattice-Boltzmann model has
been included, to maintain consistency with the continuous Fourier
integral.

The mass and momentum conservation equations (Eq. 32 without
external forces) are Fourier transformed

C
i

e ık · ciDtn −

i(k, t+Dt)=C
i

n −

i(k, t) (93)

C
i

e ık · ciDtn −

i(k, t+Dt) ci=C
i

n −

i(k, t) ci, (94)

and expanded to order k2:

dr(k, t+Dt)

+ık · j(k, t+Dt) Dt − 1
2 kk : P(k, t+Dt) Dt2=dr(k, t), (95)

j(k, t+Dt)

+ık · P(k, t+Dt) Dt − 1
2 kk : Y(k, t+Dt) Dt2=j(k, t), (96)
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where Y=;i n −

icicici is the third moment of the distribution and
dr(k, t)=r(k, t) − r0Vdk, 0.

The momentum flux is decomposed into an equilibrium part, a viscous
part, and a fluctuating part:

P(k, t)=Peq(k, t) − sc(k, t) − sf(k, t), (97)

where sc(k, t) is the Fourier transform of the collisional stress tensor
(Eq. 42)

sc(k, t)=nc[ıkj(k, t)+ıj(k, t) k]+nc
vık · j(k, t) 1. (98)

Equation 97 is a typical Langevin decomposition into slow (sc) and fast
(sf) components. Thus sf is not equivalent to the random fluctuations in
Eq. 79, but instead expresses the instantaneous deviations of the stress
tensor from sc. These deviations include the effects of random fluctuations
at earlier times, which persist for times up to t1.

For small fluctuations from equilibrium, non-linear terms can be
ignored and Peq(k, t)=dr(k, t) c2

s1. Similarly, the effects of density fluc-
tuations on the transport coefficients (c.f. Eq. 58) can also be neglected and
the momentum flux written as

ık · P(k, t) Dt=nck2Dtj(k, t)+(nc
l − nc) k2Dtk̂k̂ · j(k, t)

− ık · sf(k, t) Dt+ıkdr(k, t) c2
sDt. (99)

The kinematic viscosity coefficients nc and nc
l=nc

v+
4
3 nc contain collisional

contributions only (Eq. 43).
Since the kinetic modes relax rapidly (on a time scale Dt), the

non-equilibrium contributions to the third moment are negligible and
Yabc=Yeq

abc=c2
s(jadbc+jbdca+jcdab). This term contains the lattice contri-

butions to the viscosity (Eq. 46), together with an additional term propor-
tional to kk · j. Combining this result with Eq. 99,

ık · P(k, t) Dt − 1
2 kk : Y(k, t) Dt2

=nk2Dtj(k, t)+(nl − n) k2Dtk̂k̂ · j(k, t) − ık · sf(k, t)

+ıkdr(k, t) c2
sDt − 1

2 rc2
sDt2k2k̂k̂ · j(k, t). (100)

The mass conservation equation (Eq. 95) can be used to replace the last
two terms on the right hand side by density fluctuations,

ıkdr(k, t) − 1
2 Dtk2k̂k̂ · j(k, t)=1

2 [ıkdr(k, t)+ıkdr(k, t − Dt)]. (101)

Terms proportional to dr vanish at small k and can be omitted from
the momentum fluctuations. Although fluctuations in density and longitu-
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dinal momentum are correlated at finite wavelengths, they are decoupled
in the long-wavelength limit. The longitudinal j||=k̂ · j and transverse
j + =(1 − k̂k̂) · j components can be calculated separately:

j||(k, t+Dt) − j||(k, t)+nlk2Dtj||(k, t+Dt)=ıkDtsf
|| (k, t+Dt) (102)

j + (k, t+Dt) − j + (k, t)+nk2Dtj + (k, t+Dt)=ıkDtsf
+ (k, t+Dt). (103)

Equations 102 and 103 are discrete Langevin equations, similar to Eq. 84,
with random forces sf

|| =k̂ · sf · k̂ and sf
+ =k̂ · sf · (1 − k̂k̂). Unlike the

integrated stress correlations (Eq. 83), here the random forces have finite
correlation times, and the solution involves a Green–Kubo integral (see the
Appendix of ref. 69),

2nlOj||(k) j||( − k)P=Dt C
.

t= − .

Osf
|| (k, t) sf

|| ( − k, 0)P, (104)

2nOj + (k) · j + ( − k)P=Dt C
.

t= − .

Osf
+ (k, t) · sf

+ ( − k, 0)P. (105)

In the long-wavelength limit, the fluctuating stress, limk Q 0 sf(k, t), is
equal to the volume integral of the stress, S(t), since momentum fluctua-
tions vanish. The right hand sides of Eqs. 104 and 105 can then be
evaluated in the long-wavelength limit, using Eq. 88 to calculate the sums
of the stress fluctuations:

2nl lim
k Q 0

Oj||(k) j||( − k)P=VDx3Dt 14
3

z2

l2+
z2

v

l2
2 , (106)

2n lim
k Q 0

Oj + (k) · j + ( − k)P=VDx3Dt 12
z2

l2
2 . (107)

In the long wavelength limit, the fluctuations in momentum density at each
lattice node are independent and can be expressed in terms of the fluctua-
tions in population:

lim
k Q 0

Oj||(k) j||( − k)P=NOj2P, (108)

lim
k Q 0

Oj + (k) · j + ( − k)P=2NOj2P, (109)

where Oj2P=1
3 ;i O(n −

i)
2 c2

iP are the fluctuations in momentum density at a
single site. Thus we have established a direct connection between the
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amplitude of the random stress fluctuations and the fluctuations in
momentum at a single site:

z=12NOj2P nl2

VDx3Dt
21/2

, zv=12NOj2P nvl
2
v

VDx3Dt
21/2

. (110)

In a molecular gas or liquid in thermal equilibrium, the average fluc-
tuation in momentum of a collection of particles of total mass m is mkBT.
To make a connection between the strength of the random forcing and the
thermodynamic temperature, we take the momentum fluctuations at a
lattice node Oj2P to be mkBT, where m=rDx3 is the the mass associated
with each lattice node. This leads immediately to Eq. 91 for the strength of
the random stress fluctuations, and shows that the lattice-Boltzmann model
is a self-consistent model for the fluctuations of a molecular liquid or gas at
scales in between the molecular and the macroscopic.

Thermal fluctuations can therefore be incorporated into a suspension
simulation by adding random fluctuations to the stress tensor at each fluid
site (Eq. 79). Such simulations satisfy the fluctuation-dissipation relation (70)

(see Fig. 3), and lead to reasonably quantitative calculations of the hydro-
dynamic transport coefficients. (70, 109) However, published simulations do
not have good equipartition of energy between the particles and fluid; the
thermal energy of the particles was typically 15–20% less than that of the
fluid. (70) The inclusion of longitudinal momentum fluctuations should go a
long way towards correcting this error. Although the longitudinal fluctua-
tions decay more rapidly than the shear fluctuations (by propagation of
sound waves), they still contribute to the instantaneous particle velocity
fluctuations and will therefore increase the translational and rotational
energy of the solid particles. The expected increase in the thermal energy of
the particles is 1 part in 5, approximately the amount required for equipar-
tition.

9. COMPUTATIONAL COSTS

It is difficult to make comparisons of the computational cost of dif-
ferent simulation methods, largely because of ongoing algorithmic impro-
vements; present-day comparisons can easily be made obsolete by some
important technical innovation. Nevertheless, we will make some order of
magnitude estimates of the computational costs of typical lattice-Boltz-
mann simulations, which may then be compared with other algorithms. In
a dilute suspension (or pure fluid) the computational cost of the particles is
negligible. In this case a reasonable source code, written in C or Fortran,
but not extensively optimized, runs at about 1.2 MSUPS (Millions of Site
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Updates Per Second) on a Dec Alpha EV6 processor (667 MHz). A com-
parably clocked Pentium processor (600 MHz PIII), runs at about 0.6
MSUPS, or half the speed of the Alpha. The additional overhead imposed
by the particles comes largely, but not exclusively, from the solid-fluid
boundary conditions, and varies considerably depending on the solid par-
ticle size and concentration. Larger particles have a smaller overhead at
comparable concentrations, because of the more favorable surface to
volume ratio. A typical suspension simulation might run at about 0.3
MSUPS on a Pentium PIII, but for large numbers of small particles, as
used in our sedimentation simulations, the speed is more like 0.2 MSUPS.
Under extreme conditions the overhead could be as much as a factor of 5,
reducing the speed to about 0.1 MSUPS. In our estimates of computational
time, we will use a speed of 0.2 MSUPS as typical for a dynamical simula-
tion under conditions where useful data is generated. The speed of the
lattice-Boltzmann simulations can of course be enhanced by parallelization.
The fluid part of the code is easily parallelized, but the particle part is more
complex. With our present implementation a parallelization efficiency of
50% is readily achieved on our 16-processor Beowulf cluster (dual 600
MHz Pentium PIII nodes) and up to 80% efficiency with 4-8 processors.
This performance is by no means optimum, and improvements will be
made in future.

The speed of the simulation is greatly dependent on the size of the
particles; the computational cost scales as the particle size to the 4th power,
3 for the volume and 1 for the time. At low Reynolds numbers, satisfactory
results can be obtained with a volume per particle of about 500–1000 lattice
nodes, independent of concentration. This translates to a particle radius of
about 5 lattice spacings at high solids concentrations (50% by volume) and
around 2 lattice spacings at low solids concentrations (10% by volume). We
have previously found this to be sufficient to reduce the error in the
hydrodynamic interactions to the order of 1%. For large scale simulations
at relatively low solids concentrations, the volume per particle can be
reduced to as little as 100 lattice nodes, although the errors may then be of
the order of 5–10%. In our estimates we will make a conservative choice of
500 lattice nodes per particle.

The most difficult thing to estimate is the number of time steps neces-
sary to move the particles a significant distance. We define the Stokes time,
ts=a/U, as the time necessary for a particle to move a distance equal to its
radius. In the lattice-Boltzmann method, the time step is fixed and the par-
ticle velocity is varied. The maximum velocity that can be reasonably used,
while keeping the compressibility artifacts within bounds is 0.1Dx/Dt.
However, a smaller velocity should be used so that the particles do not
change grid positions every few steps. Our simulations use at least 100 steps
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per Stokes time (U % 0.01Dx/Dt), and we will take 200 steps as a typical
number. Thus the computational cost to update N particles for 1 Stokes
time comes out to be approximately 0.5N seconds. A sedimentation simu-
lation with 30,000 particles for 500 Stokes times therefore takes about 2000
hours of processor time or about 10 days on a 16 cpu cluster running at
50% efficiency.

There are many caveats to this calculation. First the Reynolds number
cannot be made very small without substantially increasing the computa-
tional cost. The kinematic viscosity of the fluid cannot be increased much
above 1Dx2/Dt without losing accuracy; thus a typical Reynolds number is
of order 0.1. The cost of running at very low Re is high, although in some
instances this can be improved by using implicit methods. (120) At high
Reynolds number larger particles are necessary, (63) again with substantial
increases in computer cost. Thus the lattice-Boltzmann simulations are
most efficient in the range of Reynolds numbers from about 0.1 to 100. On
the other hand, improvements in boundary conditions can reduce the
computational cost in porous media simulations by more than a factor of
10. (121) It remains to be seen if these same gains can be realized for particle
suspensions. The accuracy of lattice-Boltzmann simulations also falls in a
range. It is relatively easy to reduce the errors to 0.1–1%, but it becomes
quite costly to try to reduce the errors beyond that, because of the
pixelated description of the particle surface. Again it remains to be seen if
new boundary conditions can improve this situation.

It can be seen that lattice-Boltzmann methods have a huge computa-
tional advantage over Stokesian dynamics in situations where the the
number of particles is large and the Reynolds number need not be too
small. For a system of 10000 particles, the matrix decomposition alone in
Stokesian dynamics would require of the order of 1015 floating point
operations, or times in excess of 106 seconds per time step. At least 10 such
decompositions would be necessary to follow the system for 1 Stokes time,
while a lattice-Boltzmann simulation would require 1–2 hours of cpu time,
and perhaps only on the order of 10 minutes using continuous-bounce-
back boundary conditions. On the other hand, improvements in the Stoke-
sian dynamics methodology (111) can reduce the cpu time for such simula-
tions by many orders of magnitude, again to something of the order 10
minutes. In terms of the accuracy of the two methods, Stokesian dynamics
is typically more accurate for relative motion of particles, for example a
shear flow. This is primarily because the hydrodynamic interactions are
dominated by lubrication forces, which are more easily and effectively
implemented in Stokesian dynamics. On the other hand, lattice-Boltzmann
methods do a much better job of accounting for the relative motion
between particle and fluid phases, especially at high density, where
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Stokesian dynamics fails to be quantitative unless many more force multi-
poles are included.

ACKNOWLEDGMENTS

This manuscript was prepared with financial support from grants from
the National Aeronautics and Space Administration (NAG3-2382), and the
American Chemical Society Petroleum Research Fund (34142-AC9). Some
of the work described here was carried out with support from the US
Department of Energy (DE-FG02-98ER14853).

REFERENCES

1. C. K. Aidun and Y. N. Lu, Lattice Boltzmann simulation of solid particles suspended in
fluid, J. Stat. Phys. 81:49–61 (1995).

2. C. K. Aidun, Y. N. Lu, and E. Ding, Direct analysis of particulate suspensions with
inertia using the discrete Boltzmann equation, J. Fluid Mech. 373:287–311 (1998).

3. R. C. Ball and J. R. Melrose, A simulation technique for many spheres in quasi-static
motion under frame-invariant pair drag and Brownian forces, Physica A 247:444–472
(1997).

4. C. W. J. Beenakker, The effective viscosity of a concentrated suspension (and its relation
to diffusion), Physica A 128:48–81 (1984).

5. O. P. Behrend, Solid-fluid boundaries in particle suspension simulations via the lattice-
Boltzmann method, Phys. Rev. E 52:1164 (1995).

6. R. Benzi, S. Succi, and M. Vergassola, The lattice-Boltzmann equation - Theory and
applications, Phys. Rep. 222:145 (1992).

7. H. Binous and R. J. Phillips, The effect of sphere-wall interactions on particle motion in
a viscoelastic suspension of FENE dumbbells, J. Non-Newton. Fluid Mech. 85:63–92
(1999).

8. G. A. Bird, Molecular Gas Dynamics (University Press, London, Oxford, 1976).
9. L. Bocquet, J. Piasecki, and J.-P. Hansen, On the Brownian motion of a massive sphere

suspended in a hard sphere fluid. 1. Multiple-time-scale analysis and microscopic
expression for the friction coefficient, J. Stat. Phys. 76:505–526 (1994).

10. G. Bossis and J. F. Brady, Self-diffusion of Brownian particles in concentrated suspen-
sions under shear, J. Chem. Phys. 87:5437 (1987).

11. J. F. Brady, Rheology of concentrated colloidal dispersions, J. Chem. Phys. 99:567–581
(1993).

12. J. F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid. Mech. 20:111 (1988).
13. J. F. Brady and J. F. Morris, Microstructure of strongly sheared suspensions and its

impact on rheology and diffusion, J. Fluid Mech. 348:103–139 (1997).
14. H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane

surface, Chem. Engng. Sci. 16:242–251 (1961).
15. M. P. Brenner, Screening mechanisms in sedimentation, Phys. Fluids 11:754–772 (1999).
16. R. E. Caflisch and J. H. C. Luke, Variance in the sedimentation speed of a suspension,

Phys. Fluids 28:759 (1985).
17. A. A. Catherall, J. R. Melrose, and R. C. Ball, Shear thickening and order-disorder

effects in concentrated colloids at high shear rates, J. Rheol. 44:1–25 (2000).

1246 Ladd and Verberg



18. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases
(Cambridge University Press, Cambridge, 1960).

19. H. Chen, Volumetric formulation of the lattice-Boltzmann method for fluid dynamics:
Basic Concept, Phys. Rev. E 58:3955–3963 (1998).

20. H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier–Stokes equations
using a lattice-gas Boltzmann method, Phys. Rev. A 45:R5339–5342 (1992a).

21. H. D. Chen, C. Teixeira, and K. Molvig, Realization of fluid boundary conditions via
discrete Boltzmann dynamics, Int. J. Mod. Phys. C 9:1281–1292 (1998).

22. S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, in Annual
Review of Fluid Mechanics, J. L. Lumley, M. V. Dyke, and H. L. Reed, eds. (Palo Alto,
California, 1998), pp. 329–364.

23. S. Chen, Z. Wang, X. Shan, and G. D. Doolen, Lattice Boltzmann computational fluid
dynamics in three dimensions, J. Stat. Phys 68:379 (1992b).

24. S. Y. Chen, D. Martinez, and R. W. Mei, On boundary conditions in lattice Boltzmann
methods, Phys. Fluids 8:2527–2536 (1996).

25. B. Cichocki and R. B. Jones, Image representation of a spherical particle near a hard
wall, Physica A 258:273–302 (1998).

26. I. L. Claeys and J. F. Brady, Suspensions of prolate spheroids in Stokes flow. 1. Dyna-
mics of a finite number of particles in an unbounded fluid, J. Fluid Mech. 251:411–442
(1993).

27. R. Cornubert, D. d’Humières, and C. D. Levermore, A Knudsen layer theory for lattice
gases, Physica D 47:241 (1991).

28. R. G. Cox, The motion of suspended particles almost in contact, Int. J. Multiphase Flow
1:343–371 (1974).

29. R. I. Cukier, R. Kapral, and J. R. Mehaffey, Kinetic theory of the hydrodynamic
interaction between 2 particles, J. Chem. Phys. 74:2494–2504 (1981).

30. B. Dubrulle, U. Frisch, M. Hénon, and J.-P. Rivet, Low-viscosity lattice gases, Physica
D 47:27–29 (1991).

31. L. Durlofsky, J. F. Brady, and G. Bossis, Dynamic simulation of hydrodynamically
interacting particles, J. Fluid Mech. 180:21 (1987).

32. D. A. Edwards, M. Shapiro, P. Bar-Yoseph, and M. Shapira, The influence of Reynolds
number upon the apparent permeability of spatially periodic arrays of cylinders, Phys.
Fluids A 2:45 (1990).

33. D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interac-
tions, J. Chem. Phys. 69:1352 (1978).

34. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial-value problems for the
motion of solid bodies in a Newtonian fluid. 1. Sedimentation, J. Fluid Mech. 261:95–134
(1994a).

35. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial-value problems for the
motion of solid bodies in a Newtonian fluid. 2. Couette and Poiseuille flows, J. Fluid
Mech. 277:271–301 (1994b).

36. O. Filippova and D. Hänel, Grid-refinement for lattice-BGK models, J. Comput. Phys.
147:219 (1998).

37. A. L. Fogelson and C. S. Peskin, A fast numerical method for solving the three-dimen-
sional Stokes equations in the presence of suspended particles, J. Comput. Phys. 79:50
(1988).

38. B. Fornberg, Steady incompressible flow past a row of circular cylinders, J. Fluid Mech.
225:625 (1991).

39. D. R. Foss and J. F. Brady, Structure, diffusion and rheology of Brownian suspensions
by Stokesian dynamics simulation, J. Fluid Mech. 407:167–200 (2000).

Lattice-Boltzmann Simulations of Particle-Fluid Suspensions 1247



40. S. Fraden and G. Maret, Multiple light scattering from concentrated, interacting sus-
pensions, Phys. Rev. Lett. 65:512 (1990).

41. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,
Lattice gas hydrodynamics in two and three dimensions, Complex Systems 1:649
(1987).

42. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier–Stokes
equation, Phys. Rev. Lett. 56:1505 (1986).

43. M. A. Gallivan, D. R. Noble, J. G. Georgiadis, and R. O. Buckius, An evaluation of the
bounce-back boundary condition for lattice Boltzmann simulations, Int J. Numer. Meth.
Fluids 25:249–263 (1997).

44. C. K. Ghadder, On the permeability of unidirectional fibrous media: A parallel compu-
tational approach, Phys. Fluids 7:2563 (1995).

45. I. Ginzbourg and P. M. Adler, Boundary condition analysis for the three-dimensional
lattice-Boltzmann model, J. Phys. II France 4:191 (1994).

46. I. Ginzbourg and D. d’Humières, Local second-order boundary methods for lattice-
Boltzmann models, J. Stat. Phys. 84:927 (1996).

47. R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, A distributed
Lagrange multiplier/fictitious domain method for the simulation of flow around moving
rigid bodies, Comput. Method Appl Math Engng 184:241–267 (2000).

48. A. Greenbaum, Iterative methods for solving linear systems (Society for Industrial and
Applied Mathematics, Philadelphia, 1997).

49. R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulation, J. Chem. Phys. 107:4423–4435 (1997).

50. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London,
1986).

51. J. Happel and H. Brenner, Low-Reynolds Number Hydrodynamics (Martinus Nijhoff,
Dordrecht, 1986).

52. E. H. Hauge and A. Martin-Löf, Fluctuating hydrodynamics and Brownian motion,
J. Stat. Phys. 7:259 (1973).

53. X. He and L.-S. Luo, Lattice-Boltzmann model for the incompressible Navier–Stokes
equation, J. Stat. Phys. 88:927 (1997).

54. X. He, Q. Zou, L.-S. Luo, and M. Dembo, Analytic solutions of simple flows and
analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat.
Phys. 87:115–136 (1997).

55. M. W. Heemels, M. H. J. Hagen, and C. P. Lowe, Simulating solid colloidal particles
using the lattice-Boltzmann equation, J. Comput. Phys. 164:48–61 (2000).

56. F. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions,
Europhys. Lett. 9:345 (1989).

57. R. J. Hill, D. L. Koch, and A. J. C. Ladd, Inertial flows in ordered and random arrays
of spheres, J. Fluid Mech, Submitted (1999).

58. P. J. Hoogerbrugge and J. M. V. A. Koelman, Simulating microscopic hydrodynamic
phenomena with dissipative particle dynamics, Europhys. Lett. 19:155 (1992).

59. W. G. Hoover, T. G. Pierce, C. G. Hoover, J. O. Shugart, C. M. Stein, and A. L.
Edwards, Molecular-dynamics, smoothed-particle applied mechanics, and irreversibility,
Comput. Math. Appl. 28:155–174 (1994).

60. A. Jasberg, A. Koponen, M. Kataja, and J. Timonen, Hydrodynamical forces acting on
particles in a two-dimensional flow near a solid wall, Comput. Phys. Comm. 129:196–206
(2000).

61. D. J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions of two
unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech. 139:261 (1984).

1248 Ladd and Verberg



62. D. D. Joseph, Y. J. Liu, M. Poletto, and J. Feng, Aggregation and dispersion of spheres
falling in viscoelastic liquids, J. Non-Newton Fluid Mech. 54:45–86 (1994).

63. D. L. Koch and A. J. C. Ladd, Moderate Reynolds number flows through periodic and
random arrays of aligned cylinders, J. Fluid Mech. 349:31 (1997).

64. D. L. Koch and E. S. G. Shaqfeh, Screening in sedimenting suspensions, J. Fluid Mech.
224:275 (1991).

65. A. Koponen, Simulations of Fluid Flow in Porous Media by Lattice-Gas and Lattice-
Boltzmann Methods, Ph.D. thesis, University of Jyväkylä, Finland (1998).

66. A. J. C. Ladd, Hydrodynamic interactions in a suspension of spherical particles,
J. Chem. Phys. 88:5051 (1988).

67. A. J. C. Ladd, Hydrodynamic transport coefficients of random dispersions of hard
spheres, J. Chem. Phys. 93:3484 (1990).

68. A. J. C. Ladd, Short-time motion of colloidal particles: Numerical simulation via a fluc-
tuating lattice-Boltzmann equation, Phys. Rev. Lett. 70:1339 (1993).

69. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized
Boltzmann equation Part I. Theoretical foundation, J. Fluid Mech. 271:285 (1994a).

70. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized
Boltzmann equation Part II. Numerical results, J. Fluid Mech. 271:311 (1994b).

71. A. J. C. Ladd, Hydrodynamic screening in sedimenting suspensions of non-Brownian
spheres, Phys. Rev. Lett. 76:1392 (1996).

72. A. J. C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian spheres,
Phys. Fluids 9:491–499 (1997).

73. A. J. C. Ladd, M. E. Colvin, and D. Frenkel, Application of lattice-gas cellular auto-
mata to the Brownian motion of solids in suspension, Phys. Rev. Lett. 60:975 (1988).

74. A. J. C. Ladd and D. Frenkel, Dynamics of colloidal dispersions via lattice-gas models
of an incompressible fluid, in Cellular Automata and Modeling of Complex Physical
Systems, P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, eds. (Berlin-
Heidelberg, 1989), pp. 242–245.

75. A. J. C. Ladd and D. Frenkel, Dissipative hydrodynamic interactions via lattice-gas
cellular automata, Physics of Fluids A 2:1921 (1990).

76. A. J. C. Ladd, Effects of container walls on the velocity fluctuations of sedimenting
spheres, Unpublished work (2000).

77. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, London, 1959).
78. L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-Wesley, Reading,

Massachusetts, 1969).
79. C. E. Leith, Stochastic backscatter in a subgrid-scale model - Plane shear mixing layer,

Phys. Fluids A 2:297–299 (1990).
80. A. Levine, S. Ramaswamy, E. Frey, and R. Bruinsma, Screened and unscreened phases

in sedimenting suspensions, Phys. Rev. Lett. 81:5944 (1998).
81. M. Loewenberg and E. J. Hinch, Numerical simulation of a concentrated emulsion in

shear flow, J. Fluid Mech. 321:395–419 (1996).
82. C. P. Lowe and D. Frenkel, Short-time dynamics of colloidal suspensions, Phys. Rev. E

54:2704–2713 (1996).
83. C. P. Lowe, D. Frenkel, and A. J. Masters, Long-time tails in angular momentum corre-

lations, J. Chem. Phys. 103:1582–1587 (1995).
84. J. H. C. Luke, Decay of velocity fluctuations in a stably stratified suspension, Phys.

Fluids. 12:1619–1621 (2000).
85. L.-S. Luo, Unified theory of lattice Boltzmann models for nonideal gases, Phys. Rev.

Lett. 81:1618–1621 (1998).

Lattice-Boltzmann Simulations of Particle-Fluid Suspensions 1249



86. A. Madja, Compressible Fluid Flow and Systems of Conservation Laws in Several Space
Dimensions (Springer-Verlag, New York, 1984).

87. R. S. Maier, R. S. Bernard, and D. W. Grunau, Boundary conditions for the lattice
Boltzmann method, Phys. Fluids 8:1788–1801 (1996).

88. D. O. Martinez, W. H. Matthaes, S. Chen, and D. C. Montgomery, On boundary con-
ditions in lattice Boltzmann methods, Phys. Fluids 6:1285–1298 (1994).

89. G. R. McNamara and B. J. Alder, Analysis of the lattice Boltzmann treatment of
hydrodynamics, Physica A 194:218 (1993).

90. G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas
automata, Phys. Rev. Lett. 61:2332 (1988).

91. R. W. Mei, L. S. Luo, and W. Shyy, An accurate curved boundary treatment in the
lattice Boltzmann method, J. Comput. Phys. 155:307–330 (1999).

92. J. R. Melrose and R. C. Ball, The pathological behavior of sheared hard-spheres with
hydrodynamic interactions, Europhys. Lett. 32:535–540 (1995).

93. J. J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astr. 30:543–574
(1992).

94. J. P. Morris, P. J. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible
Flow Using SPH, J. Comput. Phys. 136:214–226 (1997).

95. G. P. Muldowney and J. J. L. Higdon, A spectral boundary-element approach to
3-dimensional Stokes flow, J. Fluid Mech. 298:167–192 (1995).

96. N.-Q. Nguyen and A. J. C. Ladd, Lubrication forces in lattice-Boltzmann simulations,
Unpublished work (2000).

97. H. Nicolai and E. Guazzelli, Effect of the vessel size on the hydrodynamic diffusion of
sedimenting spheres, Phys. Fluids 7:3 (1995).

98. D. R. Noble, S. Y. Chen, J. G. Georgiadis, and R. O. Buckius, A consistent hydrody-
namic boundary-condition for the lattice Boltzmann method, Phys. Fluids 7:203–209
(1995).

99. S. A. Orszag and V. Yakhot, Reynolds-number scaling of cellular-automaton hydrody-
namics, Phys. Rev. Lett. 56:1691–1693 (1986).

100. H. C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer-Verlag, Berlin, 1996).
101. T. N. Phung, J. F. Brady, and G. Bossis, Stokesian dynamics simulation of Brownian

suspensions, J. Fluid Mech. 313:181–207 (1996).
102. C. Pozrikidis, On the transient motion of ordered suspensions of liquid drops, J. Fluid

Mech. 246:301–320 (1993).
103. D. W. Qi, Lattice Boltzmann simulations of particles in nonzero Reynolds number flows,

J. Fluid Mech. 385:41–62 (1999).
104. Y. H. Qian, D. d’Humières, and P. Lallemand, Lattice BGK models for the Navier–

Stokes equation, Europhys. Lett. 17:479–484 (1992).
105. S. R. Rastogi, N. J. Wagner, and S. R. Lustig, Rheology, self-diffusion, and microstruc-

ture of charged colloids under simple shear by massively parallel nonequlibrium
Brownian dynamics, J. Chem. Phys. 104:9234–9248 (1996).

106. D. H. Rothman, Cellular-automaton fluids: a model for flow in porous media, Geophys.
53:509–518 (1988).

107. A. S. Sangani and A. Acrivos, Slow flow past periodic arrays of cylinders with applica-
tion to heat transfer, Int. J. Multiphase Flow 8:193 (1982).

108. A. S. Sangani and G. B. Mo, An O(N) algorithm for Stokes and Laplace interactions of
particles, Phys. Fluids 8:1990–2010 (1996).

109. P. N. Segré, O. P. Behrend, and P. N. Pusey, Short-time Brownian motion in colloidal
suspensions-Experiment and simulation, Phys. Rev. E 52:5070–5083 (1995).

1250 Ladd and Verberg



110. P. N. Segré, E. Herbolzheimer, and P. M. Chaikin, Long-range correlations in sedimen-
tation, Phys. Rev. Lett. 79:2574 (1997).

111. A. Sierou and J. F. Brady, Accelerated Stokesian dynamics simulations, J. Fluid Mech.
(2001)

112. P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method, Phys.
Rev. E 48:4823–4842 (1993).

113. J. A. Somers and P. C. Rem, in Shell Conference on Parallel Computing, G. A. van der
Zee, ed. (1988).

114. P. Tong and B. J. Ackerson, Analogies between colloidal sedimentation and turbulent
convection at high Prandtl numbers, Phys. Rev. E 58:R6931–R6934 (1998).

115. S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible,
multi-fluid flows, J. Comput. Phys. 100:25–37 (1992).

116. M. A. van der Hoef, D. Frenkel, and A. J. C. Ladd, Self-diffusion of colloidal particles
in a two-dimensional suspension: are deviations from Fick’s law experimentally observ-
able?, Phys. Rev. Lett. 67:3459 (1991).

117. J. C. van der Werff and C. G. de Kruiff, Hard-sphere colloidal dispensions: the scaling
of rheological properties with particle size, volume fraction, and shear rate, J. Rheol.
33:421 (1989).

118. J. C. van der Werff, C. G. de Kruiff, C. Blom, and J. Mellema, Linear viscoelastic
behavior of dense hard-sphere dispersions, Phys. Rev. A 39:795–807 (1989).

119. R. Verberg, I. M. de Schepper, and E. G. D. Cohen, Viscosity of colloidal suspensions,
Phys. Rev. E 55:3143–3158 (1997).

120. R. Verberg and A. J. C. Ladd, Simulation of low-Reynolds-number flow via a time-
independent lattice-Boltzmann method, Phys. Rev. E 60:3366–3373 (1999).

121. R. Verberg and A. J. C. Ladd, Lattice-Boltzmann model with sub-grid scale boundary
conditions, Phys. Rev. Lett 84:2148–2151 (2000a).

122. R. Verberg and A. J. C. Ladd, Simulations of erosion in narrow fractures, Water
Resources Res., Submitted: Preprint at http://www.che.ufl.edu/ladd/publications/
wrr00.pdf (2000b).

123. D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. A. Tough, Nondiffusive Brownian
motion studied by Diffusing-Wave Spectroscopy, Phys. Rev. Lett. 63:1747 (1989).

124. Y. Zhu, P. J. Fox, and J. P. Morris, A Pore-Scale Numerical Model for Flow through
Porous Media, Int. J. Numer. Anal. Methods Geomech. 23:881–904 (1999).

125. J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, Scaling of transient
hydrodynamic interactions in concentrated suspensions, Phys. Rev. Lett. 68:2559 (1992).

126. D. P. Ziegler, Boundary conditions for lattice-Boltzmann simulations, J. Stat. Phys.
71:1171–1177 (1993).

127. A. Z. Zinchenko and R. H. Davis, An efficient algorithm for hydrodynamical interaction
of many deformable drops, J. Comput. Phys. 157:539–587 (2000).

Lattice-Boltzmann Simulations of Particle-Fluid Suspensions 1251


	1 INTRODUCTION
	2 SIMULATION METHODS
	3 LATTICEBOLTZMANN METHOD
	4 A 3D LATTICEBOLTZMANN MODEL
	5 MACROSCOPIC DYNAMICS
	6 SOLIDFLUID BOUNDARY CONDITIONS
	7 HYDRODYNAMIC INTERACTIONS
	8 FLUCTUATIONS
	9 COMPUTATIONAL COSTS
	

